File: nydata.Rd

package info (click to toggle)
r-cran-spdata 2.3.4-1
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 6,920 kB
  • sloc: xml: 10; makefile: 2
file content (70 lines) | stat: -rw-r--r-- 3,374 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
% Generated by roxygen2: do not edit by hand
% Please edit documentation in R/nydata.R
\docType{data}
\name{nydata}
\alias{nydata}
\alias{NY_data}
\alias{listw_NY}
\title{New York leukemia data}
\format{
A data frame with 281 observations on the following 12 variables, and the binary coded spatial weights used in the source.
\itemize{
\item{AREANAME: name of census tract}
\item{AREAKEY: unique FIPS code for each tract}
\item{X: x-coordinate of tract centroid (in km)}
\item{Y: y-coordinate of tract centroid (in km)}
\item{POP8: population size (1980 U.S. Census)}
\item{TRACTCAS: number of cases 1978-1982}
\item{PROPCAS: proportion of cases per tract}
\item{PCTOWNHOME: percentage of people in each tract owning their own home}
\item{PCTAGE65P: percentage of people in each tract aged 65 or more}
\item{Z: ransformed propoprtions}
\item{AVGIDIST: average distance between centroid and TCE sites}
\item{PEXPOSURE: "exposure potential": inverse distance between each census tract centroid and the nearest TCE site, IDIST, transformed via log(100*IDIST)}
\item{Cases: as TRACTCAS with more digits}
\item{Xm: X in metres}
\item{Ym: Y in metres}
\item{Xshift: feature offset}
\item{Yshift: feature offset}
}
}
\source{
http://www.sph.emory.edu/~lwaller/ch9index.htm
}
\usage{
nydata
}
\description{
New York leukemia data taken from the data sets supporting Waller and Gotway 2004 (the data should be loaded by running \code{example(NY_data)} to demonstrate spatial data import techniques)
}
\details{
The examples section shows how the DBF files from the book website for Chapter 9 were converted into the \code{nydata} data frame and the \code{listw_NY} spatial weights list. The \code{shapes} directory includes the original version of the UTM18 census tract boundaries imported from BNA format (http://sedac.ciesin.columbia.edu/ftpsite/pub/census/usa/tiger/ny/bna_st/t8_36.zip) before the OGR/GDAL BNA driver was available. The \code{NY8_utm18} shapefile was constructed using a bna2mif converter and converted to shapefile format after adding data using \code{writeOGR}. The new file \code{NY8_bna_utm18.gpkg} has been constructed from the original BNA file, but read using the OGR BNA driver with GEOS support. The NY8 shapefile and GeoPackage NY8_utm18.gpkg include invalid polygons, but because the OGR BNA driver may have GEOS support (used here), the tract polygon objects in NY8_bna_utm18.gpkg are valid.
}
\examples{
## NY leukemia
\donttest{
if (requireNamespace("sf", quietly = TRUE)) {
library(foreign)
nydata <- read.dbf(system.file("misc/nydata.dbf", package="spData")[1])
nydata <- sf::st_as_sf(nydata, coords=c("X", "Y"), remove=FALSE)
plot(sf::st_geometry(nydata))

nyadjmat <- as.matrix(read.dbf(system.file("misc/nyadjwts.dbf",
                                           package="spData")[1])[-1])
ID <- as.character(names(read.dbf(system.file("misc/nyadjwts.dbf",
                                              package="spData")[1]))[-1])
identical(substring(ID, 2, 10), substring(as.character(nydata$AREAKEY), 2, 10))

if (requireNamespace("sf", quietly = TRUE)) {
library(spdep)
listw_NY <- mat2listw(nyadjmat, as.character(nydata$AREAKEY), style="B")
}
}
}
}
\references{
Waller, L. and C. Gotway (2004) \emph{Applied Spatial Statistics for Public Health Data}. New York: John Wiley and Sons.
}
\keyword{datasets}
\keyword{foreign}
\keyword{spdep}