File: moran.R

package info (click to toggle)
r-cran-spdep 0.8-1%2Bdfsg-1
  • links: PTS, VCS
  • area: main
  • in suites: buster
  • size: 3,876 kB
  • sloc: ansic: 1,489; sh: 16; makefile: 2
file content (190 lines) | stat: -rw-r--r-- 7,665 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
# Copyright 2001-18 by Roger Bivand 
#

moran <- function(x, listw, n, S0, zero.policy=NULL, NAOK=FALSE) {
        if (is.null(zero.policy))
            zero.policy <- get("zeroPolicy", envir = .spdepOptions)
        stopifnot(is.logical(zero.policy))
	n1 <- length(listw$neighbours)
	x <- c(x)
	if (n1 != length(x)) stop("objects of different length")
	xx <- mean(x, na.rm=NAOK)
	z <- x - xx
	zz <- sum(z^2, na.rm=NAOK)
	K <- (length(x)*sum(z^4, na.rm=NAOK))/(zz^2)
	lz <- lag.listw(listw, z, zero.policy=zero.policy, NAOK=NAOK)
#	I <- (n / S0) * ((t(z) %*% lz) / zz)
	I <- (n / S0) * ((sum(z*lz, na.rm=NAOK)) / zz)
	res <- list(I=I, K=K)
	res
}

moran.test <- function(x, listw, randomisation=TRUE, zero.policy=NULL,
	alternative="greater", rank = FALSE, na.action=na.fail, spChk=NULL, 
	adjust.n=TRUE, drop.EI2=FALSE) {
	alternative <- match.arg(alternative, c("greater", "less", "two.sided"))
	if (!inherits(listw, "listw")) stop(paste(deparse(substitute(listw)),
		"is not a listw object"))
	if (!is.numeric(x)) stop(paste(deparse(substitute(x)),
		"is not a numeric vector"))
        if (is.null(zero.policy))
            zero.policy <- get("zeroPolicy", envir = .spdepOptions)
        stopifnot(is.logical(zero.policy))
	if (is.null(spChk)) spChk <- get.spChkOption()
	if (spChk && !chkIDs(x, listw))
		stop("Check of data and weights ID integrity failed")
#	if (any(is.na(x))) stop("NA in X")
	xname <- deparse(substitute(x))
	wname <- deparse(substitute(listw))
	NAOK <- deparse(substitute(na.action)) == "na.pass"
	x <- na.action(x)
	na.act <- attr(x, "na.action")
	if (!is.null(na.act)) {
	    subset <- !(1:length(listw$neighbours) %in% na.act)
	    listw <- subset(listw, subset, zero.policy=zero.policy)
	}
	n <- length(listw$neighbours)
	if (n != length(x)) stop("objects of different length")
	
	wc <- spweights.constants(listw, zero.policy=zero.policy, 
		adjust.n=adjust.n)
	S02 <- wc$S0*wc$S0
	res <- moran(x, listw, wc$n, wc$S0, zero.policy=zero.policy, 
		NAOK=NAOK)
	I <- res$I
	K <- res$K
	if (rank) K <- (3*(3*wc$n^2 -7))/(5*(wc$n^2 - 1))
	EI <- (-1) / wc$n1
	if(randomisation) {
		VI <- wc$n*(wc$S1*(wc$nn - 3*wc$n + 3) - wc$n*wc$S2 + 3*S02)
		tmp <- K*(wc$S1*(wc$nn - wc$n) - 2*wc$n*wc$S2 + 6*S02)
                if (tmp > VI) warning("Kurtosis overflow,\ndistribution of variable does not meet test assumptions")
		VI <- (VI - tmp) / (wc$n1*wc$n2*wc$n3*S02)
                if (!drop.EI2) VI <- (VI - EI^2)
                if (VI < 0) warning("Negative variance,\ndistribution of variable does not meet test assumptions")
	} else {
		VI <- (wc$nn*wc$S1 - wc$n*wc$S2 + 3*S02) / (S02*(wc$nn - 1))
                if (!drop.EI2) VI <- (VI - EI^2)
                if (VI < 0) warning("Negative variance,\ndistribution of variable does not meet test assumptions")
	}
	ZI <- (I - EI) / sqrt(VI)
	statistic <- ZI
	names(statistic) <- "Moran I statistic standard deviate"
        if (alternative == "two.sided") 
		PrI <- 2 * pnorm(abs(ZI), lower.tail=FALSE)
        else if (alternative == "greater")
            PrI <- pnorm(ZI, lower.tail=FALSE)
        else PrI <- pnorm(ZI)
	if (!is.finite(PrI) || PrI < 0 || PrI > 1) 
		warning("Out-of-range p-value: reconsider test arguments")
	vec <- c(I, EI, VI)
	names(vec) <- c("Moran I statistic", "Expectation", "Variance")
	method <- paste("Moran I test under", ifelse(randomisation,
	    "randomisation", "normality"))
	data.name <- paste(xname, ifelse(rank,
		"using rank correction",""), "\nweights:",
		wname, ifelse(is.null(na.act), "", paste("\nomitted:", 
	    paste(na.act, collapse=", "))),
            ifelse(adjust.n && isTRUE(any(sum(card(listw$neighbours) == 0L))),
            "n reduced by no-neighbour observations\n", ""),
            ifelse(drop.EI2, "EI^2 term dropped in VI", ""), "\n")
	res <- list(statistic=statistic, p.value=PrI, estimate=vec, 
	    alternative=alternative, method=method, data.name=data.name)
	if (!is.null(na.act)) attr(res, "na.action") <- na.act
	class(res) <- "htest"
	res
}

moran.mc <- function(x, listw, nsim, zero.policy=NULL,
	alternative="greater", na.action=na.fail, spChk=NULL,
        return_boot=FALSE, adjust.n=TRUE) {
	alternative <- match.arg(alternative, c("greater", "less"))
	if(!inherits(listw, "listw")) stop(paste(deparse(substitute(listw)),
		"is not a listw object"))
	if(!is.numeric(x)) stop(paste(deparse(substitute(x)),
		"is not a numeric vector"))
        if (is.null(zero.policy))
            zero.policy <- get("zeroPolicy", envir = .spdepOptions)
        stopifnot(is.logical(zero.policy))
	if(missing(nsim)) stop("nsim must be given")
	if (is.null(spChk)) spChk <- get.spChkOption()
	if (spChk && !chkIDs(x, listw))
		stop("Check of data and weights ID integrity failed")
	cards <- card(listw$neighbours)
	if (!zero.policy && any(cards == 0))
		stop("regions with no neighbours found")
#	if (any(is.na(x))) stop("NA in X")
	xname <- deparse(substitute(x))
	wname <- deparse(substitute(listw))
	if (deparse(substitute(na.action)) == "na.pass")
	    stop("na.pass not permitted")
	x <- na.action(x)
	na.act <- attr(x, "na.action")
	if (!is.null(na.act)) {
	    subset <- !(1:length(listw$neighbours) %in% na.act)
	    listw <- subset(listw, subset, zero.policy=zero.policy)
	}
	n <- length(listw$neighbours)
	if (n != length(x)) stop("objects of different length")
        gamres <- suppressWarnings(nsim > gamma(n + 1))
        if (gamres) stop("nsim too large for this number of observations")
	if (nsim < 1) stop("nsim too small")
        if (adjust.n) n <- n - sum(cards == 0L)
	
	S0 <- Szero(listw)
        if (return_boot) {
            moran_boot <- function(var, i, ...) {
                var <- var[i]
                return(moran(x=var, ...)$I)
            }
            cores <- get.coresOption()
            if (is.null(cores)) {
            parallel <- "no"
            } else {
                parallel <- ifelse (get.mcOption(), "multicore", "snow")
            }
            ncpus <- ifelse(is.null(cores), 1L, cores)
            cl <- NULL
            if (parallel == "snow") {
                cl <- get.ClusterOption()
                if (is.null(cl)) {
                    parallel <- "no"
                    warning("no cluster in ClusterOption, parallel set to no")
                }
            }
            res <- boot(x, statistic=moran_boot, R=nsim,
                sim="permutation", listw=listw, n=n, S0=S0, 
                zero.policy=zero.policy, parallel=parallel, ncpus=ncpus, cl=cl)
            return(res)
        }
	res <- numeric(length=nsim+1)
	for (i in 1:nsim) res[i] <- moran(sample(x), listw, n, S0,
	    zero.policy)$I
	res[nsim+1] <- moran(x, listw, n, S0, zero.policy)$I
	rankres <- rank(res)
	xrank <- rankres[length(res)]
	diff <- nsim - xrank
	diff <- ifelse(diff > 0, diff, 0)
	if (alternative == "less") 
        	pval <- punif((diff + 1)/(nsim + 1), lower.tail=FALSE)
    	else if (alternative == "greater") 
        	pval <- punif((diff + 1)/(nsim + 1))
	if (!is.finite(pval) || pval < 0 || pval > 1) 
		warning("Out-of-range p-value: reconsider test arguments")
	statistic <- res[nsim+1]
	names(statistic) <- "statistic"
	parameter <- xrank
	names(parameter) <- "observed rank"
	method <- "Monte-Carlo simulation of Moran I"
	data.name <- paste(xname, "\nweights:",
	    wname, ifelse(is.null(na.act), "", paste("\nomitted:", 
	    paste(na.act, collapse=", "))), "\nnumber of simulations + 1:",
	    nsim+1, "\n")
	lres <- list(statistic=statistic, parameter=parameter,
	    p.value=pval, alternative=alternative, method=method, 
	    data.name=data.name, res=res)
	if (!is.null(na.act)) attr(lres, "na.action") <- na.act
	class(lres) <- c("htest", "mc.sim")
	lres
}