1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190
|
# Copyright 2001-18 by Roger Bivand
#
moran <- function(x, listw, n, S0, zero.policy=NULL, NAOK=FALSE) {
if (is.null(zero.policy))
zero.policy <- get("zeroPolicy", envir = .spdepOptions)
stopifnot(is.logical(zero.policy))
n1 <- length(listw$neighbours)
x <- c(x)
if (n1 != length(x)) stop("objects of different length")
xx <- mean(x, na.rm=NAOK)
z <- x - xx
zz <- sum(z^2, na.rm=NAOK)
K <- (length(x)*sum(z^4, na.rm=NAOK))/(zz^2)
lz <- lag.listw(listw, z, zero.policy=zero.policy, NAOK=NAOK)
# I <- (n / S0) * ((t(z) %*% lz) / zz)
I <- (n / S0) * ((sum(z*lz, na.rm=NAOK)) / zz)
res <- list(I=I, K=K)
res
}
moran.test <- function(x, listw, randomisation=TRUE, zero.policy=NULL,
alternative="greater", rank = FALSE, na.action=na.fail, spChk=NULL,
adjust.n=TRUE, drop.EI2=FALSE) {
alternative <- match.arg(alternative, c("greater", "less", "two.sided"))
if (!inherits(listw, "listw")) stop(paste(deparse(substitute(listw)),
"is not a listw object"))
if (!is.numeric(x)) stop(paste(deparse(substitute(x)),
"is not a numeric vector"))
if (is.null(zero.policy))
zero.policy <- get("zeroPolicy", envir = .spdepOptions)
stopifnot(is.logical(zero.policy))
if (is.null(spChk)) spChk <- get.spChkOption()
if (spChk && !chkIDs(x, listw))
stop("Check of data and weights ID integrity failed")
# if (any(is.na(x))) stop("NA in X")
xname <- deparse(substitute(x))
wname <- deparse(substitute(listw))
NAOK <- deparse(substitute(na.action)) == "na.pass"
x <- na.action(x)
na.act <- attr(x, "na.action")
if (!is.null(na.act)) {
subset <- !(1:length(listw$neighbours) %in% na.act)
listw <- subset(listw, subset, zero.policy=zero.policy)
}
n <- length(listw$neighbours)
if (n != length(x)) stop("objects of different length")
wc <- spweights.constants(listw, zero.policy=zero.policy,
adjust.n=adjust.n)
S02 <- wc$S0*wc$S0
res <- moran(x, listw, wc$n, wc$S0, zero.policy=zero.policy,
NAOK=NAOK)
I <- res$I
K <- res$K
if (rank) K <- (3*(3*wc$n^2 -7))/(5*(wc$n^2 - 1))
EI <- (-1) / wc$n1
if(randomisation) {
VI <- wc$n*(wc$S1*(wc$nn - 3*wc$n + 3) - wc$n*wc$S2 + 3*S02)
tmp <- K*(wc$S1*(wc$nn - wc$n) - 2*wc$n*wc$S2 + 6*S02)
if (tmp > VI) warning("Kurtosis overflow,\ndistribution of variable does not meet test assumptions")
VI <- (VI - tmp) / (wc$n1*wc$n2*wc$n3*S02)
if (!drop.EI2) VI <- (VI - EI^2)
if (VI < 0) warning("Negative variance,\ndistribution of variable does not meet test assumptions")
} else {
VI <- (wc$nn*wc$S1 - wc$n*wc$S2 + 3*S02) / (S02*(wc$nn - 1))
if (!drop.EI2) VI <- (VI - EI^2)
if (VI < 0) warning("Negative variance,\ndistribution of variable does not meet test assumptions")
}
ZI <- (I - EI) / sqrt(VI)
statistic <- ZI
names(statistic) <- "Moran I statistic standard deviate"
if (alternative == "two.sided")
PrI <- 2 * pnorm(abs(ZI), lower.tail=FALSE)
else if (alternative == "greater")
PrI <- pnorm(ZI, lower.tail=FALSE)
else PrI <- pnorm(ZI)
if (!is.finite(PrI) || PrI < 0 || PrI > 1)
warning("Out-of-range p-value: reconsider test arguments")
vec <- c(I, EI, VI)
names(vec) <- c("Moran I statistic", "Expectation", "Variance")
method <- paste("Moran I test under", ifelse(randomisation,
"randomisation", "normality"))
data.name <- paste(xname, ifelse(rank,
"using rank correction",""), "\nweights:",
wname, ifelse(is.null(na.act), "", paste("\nomitted:",
paste(na.act, collapse=", "))),
ifelse(adjust.n && isTRUE(any(sum(card(listw$neighbours) == 0L))),
"n reduced by no-neighbour observations\n", ""),
ifelse(drop.EI2, "EI^2 term dropped in VI", ""), "\n")
res <- list(statistic=statistic, p.value=PrI, estimate=vec,
alternative=alternative, method=method, data.name=data.name)
if (!is.null(na.act)) attr(res, "na.action") <- na.act
class(res) <- "htest"
res
}
moran.mc <- function(x, listw, nsim, zero.policy=NULL,
alternative="greater", na.action=na.fail, spChk=NULL,
return_boot=FALSE, adjust.n=TRUE) {
alternative <- match.arg(alternative, c("greater", "less"))
if(!inherits(listw, "listw")) stop(paste(deparse(substitute(listw)),
"is not a listw object"))
if(!is.numeric(x)) stop(paste(deparse(substitute(x)),
"is not a numeric vector"))
if (is.null(zero.policy))
zero.policy <- get("zeroPolicy", envir = .spdepOptions)
stopifnot(is.logical(zero.policy))
if(missing(nsim)) stop("nsim must be given")
if (is.null(spChk)) spChk <- get.spChkOption()
if (spChk && !chkIDs(x, listw))
stop("Check of data and weights ID integrity failed")
cards <- card(listw$neighbours)
if (!zero.policy && any(cards == 0))
stop("regions with no neighbours found")
# if (any(is.na(x))) stop("NA in X")
xname <- deparse(substitute(x))
wname <- deparse(substitute(listw))
if (deparse(substitute(na.action)) == "na.pass")
stop("na.pass not permitted")
x <- na.action(x)
na.act <- attr(x, "na.action")
if (!is.null(na.act)) {
subset <- !(1:length(listw$neighbours) %in% na.act)
listw <- subset(listw, subset, zero.policy=zero.policy)
}
n <- length(listw$neighbours)
if (n != length(x)) stop("objects of different length")
gamres <- suppressWarnings(nsim > gamma(n + 1))
if (gamres) stop("nsim too large for this number of observations")
if (nsim < 1) stop("nsim too small")
if (adjust.n) n <- n - sum(cards == 0L)
S0 <- Szero(listw)
if (return_boot) {
moran_boot <- function(var, i, ...) {
var <- var[i]
return(moran(x=var, ...)$I)
}
cores <- get.coresOption()
if (is.null(cores)) {
parallel <- "no"
} else {
parallel <- ifelse (get.mcOption(), "multicore", "snow")
}
ncpus <- ifelse(is.null(cores), 1L, cores)
cl <- NULL
if (parallel == "snow") {
cl <- get.ClusterOption()
if (is.null(cl)) {
parallel <- "no"
warning("no cluster in ClusterOption, parallel set to no")
}
}
res <- boot(x, statistic=moran_boot, R=nsim,
sim="permutation", listw=listw, n=n, S0=S0,
zero.policy=zero.policy, parallel=parallel, ncpus=ncpus, cl=cl)
return(res)
}
res <- numeric(length=nsim+1)
for (i in 1:nsim) res[i] <- moran(sample(x), listw, n, S0,
zero.policy)$I
res[nsim+1] <- moran(x, listw, n, S0, zero.policy)$I
rankres <- rank(res)
xrank <- rankres[length(res)]
diff <- nsim - xrank
diff <- ifelse(diff > 0, diff, 0)
if (alternative == "less")
pval <- punif((diff + 1)/(nsim + 1), lower.tail=FALSE)
else if (alternative == "greater")
pval <- punif((diff + 1)/(nsim + 1))
if (!is.finite(pval) || pval < 0 || pval > 1)
warning("Out-of-range p-value: reconsider test arguments")
statistic <- res[nsim+1]
names(statistic) <- "statistic"
parameter <- xrank
names(parameter) <- "observed rank"
method <- "Monte-Carlo simulation of Moran I"
data.name <- paste(xname, "\nweights:",
wname, ifelse(is.null(na.act), "", paste("\nomitted:",
paste(na.act, collapse=", "))), "\nnumber of simulations + 1:",
nsim+1, "\n")
lres <- list(statistic=statistic, parameter=parameter,
p.value=pval, alternative=alternative, method=method,
data.name=data.name, res=res)
if (!is.null(na.act)) attr(lres, "na.action") <- na.act
class(lres) <- c("htest", "mc.sim")
lres
}
|