1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227
|
# Copyright (c) 2007-2008 Markus Reder and Roger Bivand
lm.morantest.exact <- function(model, listw, zero.policy = NULL,
alternative = "greater", spChk=NULL, resfun=weighted.residuals,
zero.tol=1.0e-7, Omega=NULL, save.M=NULL, save.U=NULL, useTP=FALSE,
truncErr=1e-6, zeroTreat=0.1)
{
if (!inherits(listw, "listw"))
stop(paste(deparse(substitute(listw)), "is not a listw object"))
if (!inherits(model, "lm"))
stop(paste(deparse(substitute(model)), "not an lm object"))
if (is.null(zero.policy))
zero.policy <- get("zeroPolicy", envir = .spdepOptions)
stopifnot(is.logical(zero.policy))
N <- length(listw$neighbours)
u <- resfun(model)
if (N != length(u))
stop("objects of different length")
if (is.null(spChk)) spChk <- get.spChkOption()
if (spChk && !chkIDs(u, listw))
stop("Check of data and weights ID integrity failed")
if (!(alternative %in% c("greater", "less", "two.sided")))
stop("alternative must be one of: \"greater\", \"less\", or \"two.sided\"")
u <- as.vector(u)
listw.U <- listw2U(listw)
S0 <- sum(unlist(listw.U$weights))
lu <- lag.listw(listw.U, u, zero.policy = zero.policy)
Nnn <- N
if (zero.policy) Nnn <- length(which(card(listw$neighbours) > 0))
I <- (Nnn/S0) * (crossprod(u, lu) / crossprod(u))
I_save <- I
if (!isTRUE(all.equal((Nnn/S0), 1))) I <- I * (S0/Nnn)
p <- model$rank
p1 <- 1:p
nacoefs <- which(is.na(coefficients(model)))
XtXinv <- chol2inv(model$qr$qr[p1, p1, drop = FALSE])
X <- model.matrix(terms(model), model.frame(model))
# fixed after looking at TOWN dummy in Boston data
if (length(nacoefs) > 0L) X <- X[,-nacoefs]
if (!is.null(wts <- weights(model))) {
X <- sqrt(diag(wts)) %*% X
}
M <- diag(N) - X %*% tcrossprod(XtXinv, X)
U <- listw2mat(listw.U)
if (is.null(Omega)) {
MVM <- M %*% U %*% M
MVM <- 0.5 * (t(MVM) + MVM)
evalue <- eigen(MVM, only.values=TRUE)$values
idxpos <- which(abs(evalue) < zero.tol)
if (length(idxpos) != p)
warning("number of zero eigenvalues greater than number of variables")
idxpos <- idxpos[1] - 1
if (idxpos < 1) {
warning("first eigenvalue index zero")
gamma <- c()
} else gamma <- evalue[1:idxpos]
gamma <- c(gamma, evalue[(idxpos+1+p):N])
res <- exactMoran(I, gamma, alternative=alternative, type="Global",
useTP=useTP, truncErr=truncErr, zeroTreat=zeroTreat)
} else {
if (dim(Omega)[1] != N) stop("Omega of different size than data")
res <- exactMoranAlt(I, M, U, Omega, N, alternative=alternative,
type="Alternative", useTP=useTP, truncErr=truncErr,
zeroTreat=zeroTreat)
}
data.name <- paste("\nmodel:", paste(strwrap(gsub("[[:space:]]+", " ",
paste(deparse(model$call), sep="", collapse=""))), collapse="\n"),
"\nweights: ", deparse(substitute(listw)), "\n", sep="")
res$estimate <- c(I_save)
res$data.name <- data.name
res$df <- (N-p)
if (!is.null(save.M)) res$M <- M
if (!is.null(save.U)) res$U <- U
return(res)
}
# function contributed by Michael Tiefelsdorf 2008
# implements his 2000 book eq. 6.7, p.69
truncPoint <- function(SpecI, truncErr=1e-6, zeroTreat=0.1){
m <- length(SpecI)
absSpecI <- abs(SpecI)
absSpecI[absSpecI < zeroTreat] <- zeroTreat
TU <- (truncErr*pi*m/2)^(-2/m) * prod(absSpecI^(-1/m))
# Break product up to reduce rounding errors and over- or under-flows
return(TU)
}
exactMoran <- function(I, gamma, alternative="greater", type="Global", np2=NULL, useTP=FALSE, truncErr=1e-6, zeroTreat=0.1) {
if (!(alternative %in% c("greater", "less", "two.sided")))
stop("alternative must be one of: \"greater\", \"less\", or \"two.sided\"")
if (type == "Global") {
SpecI <- gamma - c(I)
integrand <- function(x) {
sin(0.5 * colSums(atan(SpecI %*% t(x)))) /
(x * apply((1 + SpecI^2 %*% t(x^2))^(1/4), 2, prod))}
} else if (type == "Alternative") {
if (useTP) SpecI <- gamma
integrand <- function(x) {sin(0.5 * colSums(atan((gamma) %*% t(x)))) /
(x * apply((1+(gamma)^2 %*% t(x^2))^(1/4), 2, prod))}
} else if (type == "Local") {
if (is.null(np2)) stop("Local requires np2")
min <- gamma[1]
max <- gamma[2]
if (useTP) SpecI <- c(min, rep(0,np2), max) - I
integrand <- function(x) {
sin(0.5*(atan((min-I)*x)+(np2)*atan((-I)*x) +
atan((max-I)*x)))/(x*((1+(min-I)^2*x^2) *
(1+I^2*x^2)^(np2) * (1+(max-I)^2*x^2))^(1/4))}
}
if (useTP) upper <- truncPoint(SpecI, truncErr=truncErr,
zeroTreat=zeroTreat)
else upper <- Inf
II <- integrate(integrand, lower=0, upper=upper)$value
# FIXME II > pi/2
if (II > pi/2 && type == "Local") {
tau <- gamma
df <- np2 + 2
if (length(tau) == 2L) tau <- c(tau[1], rep(0, df-2), tau[2])
E.I <- sum(tau)/df
tau <- tau - E.I
V.I <- (2*sum(tau^2)) / (df*(df+2))
sd.ex <- (I - E.I) / sqrt(V.I)
warning("Normal approximation SD substituted", call.=FALSE)
oType <- "N"
} else {
sd.ex <- qnorm(0.5-II/pi)
oType <- "E"
}
if (alternative == "two.sided") p.v <- 2 * pnorm(abs(sd.ex),
lower.tail=FALSE)
else if (alternative == "greater")
p.v <- pnorm(sd.ex, lower.tail=FALSE)
else p.v <- pnorm(sd.ex)
if (!is.finite(p.v) || p.v < 0 || p.v > 1)
warning("Out-of-range p-value: reconsider test arguments")
statistic <- sd.ex
attr(statistic, "names") <- "Exact standard deviate"
p.value <- p.v
estimate <- c(I)
attr(estimate, "names") <- "Observed Moran I"
method <- paste(type, "Moran I statistic with exact p-value")
res <- list(statistic = statistic, p.value = p.value,
estimate = estimate, method = method,
alternative = alternative, gamma=gamma, oType=oType)
class(res) <- "moranex"
return(res)
}
exactMoranAlt <- function(I, M, U, Omega, n, alternative="greater",
type="Alternative", useTP=FALSE, truncErr=1e-6, zeroTreat=0.1) {
Omega <- chol(Omega)
A <- Omega %*% M %*% (U - diag(I, n)) %*% M %*% t(Omega)
gamma <- sort(eigen(A)$values)
obj <- exactMoran(I, gamma, alternative=alternative,
type=type, useTP=useTP, truncErr=truncErr, zeroTreat=zeroTreat)
obj
}
print.moranex <- function(x, ...) {
class(x) <- c("htest", "moranex")
print(x, ...)
invisible(x)
}
H1_moments <- function(M, U, Omega, n) {
B <- Omega %*% M %*% t(Omega)
eigen <- eigen(B)
lambda <- eigen$values
P <- eigen$vectors
A <- Omega %*% M %*% U %*% M %*% t(Omega)
H <- t(P) %*% A %*% P
hh <- diag(H)
integrand <- function(x) apply((1+2*lambda %*% t(x))^(-0.5),2,prod) *
colSums(hh/(1+2*lambda %*% t(x)))
mu <- integrate(integrand,lower=0, upper=Inf)$value
integrand2 <- function(x) {
res=0
for (i in 1:n){
for(j in 1:n){
res=res+(H[i,i]*H[j,j]+2*H[i,j]^2) /
((1+2*lambda[i]*x)*(1+2*lambda[j]*x))*x
}
}
apply((1+2*lambda %*% t(x))^(-0.5),2,prod)*res
}
mu2 <- integrate(integrand2,lower=0, upper=Inf)$value
res<-list(Ew=mu,Var=mu2-mu^2)
res
}
moranExpect_H1 <- function(listw, rho, select=FALSE){
if (!(select[1]))
select=1:length(listw$neighbours)
n <- length(select)
V <- listw2mat(listw)[select,select]
M <- diag(n)-matrix(rep(1/n,n*n),nrow=n)
WOm <- invIrW(listw, rho=rho)[select,select]
B <- WOm %*% M %*% t(WOm)
eigen <- eigen(B)
lambda <- eigen$values
P <- eigen$vectors
A <- WOm %*% M %*% (0.5*(V + t(V))) %*% M %*% t(WOm)
H <- t(P) %*% A %*% P
hh <- diag(H)
integrand <- function(x) apply((1+2*lambda %*% t(x))^(-0.5), 2, prod) *
colSums(hh/(1+2*lambda %*% t(x)))
mu <- integrate(integrand, lower=0, upper=Inf)$value
mu
}
moranExpect_rho_H1 <- function(listw, I0, select=FALSE){
if (!(select[1]))
select=1:length(listw$neighbours)
V <- listw2mat(listw)[select,select]
eigenvalues<-as.double(eigen(V)$values)
min=min(eigenvalues)
max=max(eigenvalues)
f <- function(x) abs(I0-moranExpect_H1(listw, x, select=select))
rop <- optimise(f, c(1/min,1/max))$minimum
rop
}
|