1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182
|
# Copyright 2001-10 by Roger Bivand, Markus Reder and Werner Mueller, 2015 Martin Gubri
#
nb2mat <- function(neighbours, glist=NULL, style="W", zero.policy=NULL)
{
if (is.null(zero.policy))
zero.policy <- get("zeroPolicy", envir = .spdepOptions)
stopifnot(is.logical(zero.policy))
if(!inherits(neighbours, "nb")) stop("Not a neighbours list")
listw <- nb2listw(neighbours, glist=glist, style=style,
zero.policy=zero.policy)
res <- listw2mat(listw)
attr(res, "call") <- match.call()
res
}
listw2mat <- function(listw) {
n <- length(listw$neighbours)
if (n < 1) stop("non-positive number of entities")
cardnb <- card(listw$neighbours)
if (any(is.na(unlist(listw$weights))))
stop ("NAs in general weights list")
res <- matrix(0, nrow=n, ncol=n)
for (i in 1:n)
if (cardnb[i] > 0)
res[i, listw$neighbours[[i]]] <- listw$weights[[i]]
if (!is.null(attr(listw, "region.id")))
row.names(res) <- attr(listw, "region.id")
res
}
invIrM <- function(neighbours, rho, glist=NULL, style="W", method="solve",
feasible=NULL) {
if(class(neighbours) != "nb") stop("Not a neighbours list")
invIrW(nb2listw(neighbours, glist=glist, style=style), rho=rho,
method=method, feasible=feasible)
}
invIrW <- function(x, rho, method="solve", feasible=NULL) {
if(inherits(x, "listw")) {
n <- length(x$neighbours)
V <- listw2mat(x)
} else if (inherits(x, "Matrix") || inherits(x, "matrix")) {
if (method == "chol" && all(t(x) == x))
stop("No Cholesky method for matrix or sparse matrix object")
n <- dim(x)[1]
V <- x
} else stop("Not a weights list or a Sparse Matrix")
if (is.null(feasible) || (is.logical(feasible) && !feasible)) {
e <- eigen(V, only.values = TRUE)$values
if (is.complex(e)) feasible <- 1/(range(Re(e)))
else feasible <- 1/(range(e))
if (rho <= feasible[1] || rho >= feasible[2])
stop(paste("Rho", rho, "outside feasible range:",
paste(feasible, collapse=":")))
}
if (method == "chol"){
if (x$style %in% c("W", "S") && !(can.be.simmed(x)))
stop("Cholesky method requires symmetric weights")
if (x$style %in% c("B", "C", "U") &&
!(is.symmetric.glist(x$neighbours, x$weights)))
stop("Cholesky method requires symmetric weights")
if (x$style %in% c("W", "S")) {
V <- listw2mat(listw2U(similar.listw(x)))
}
mat <- diag(n) - rho * V
res <- chol2inv(chol(mat))
} else if (method == "solve") {
mat <- diag(n) - rho * V
res <- solve(mat)
} else stop("unknown method")
attr(res, "call") <- match.call()
res
}
powerWeights <- function(W, rho, order=250, X, tol=.Machine$double.eps^(3/5)) {
timings <- list()
.ptime_start <- proc.time()
n <- dim(W)[1]
dX <- dim(X)
if (dX[1] == n) side <- "R"
else if (dX[2] == n) side <- "L"
else stop("W and X non-conformant")
aW <- rho*W
if (side == "R") last <- aW %*% X
else last <- X %*% aW
acc <- X + last
conv <- FALSE
iter <- 1
series <- numeric(order)
while (iter < order) {
if (side == "R") {
last <- aW %*% last
acc <- acc + last
} else {
last <- last %*% aW
acc <- acc + last
}
# abs() added 2017-02-15, bug spotted by Yongwan Chun
series[iter] <- mean(abs(as(last, "matrix")))
if (series[iter] < tol) {
conv <- TRUE
break
}
iter <- iter+1
}
if (!conv) warning("not converged within order iterations")
timings[["make_power_sum"]] <- proc.time() - .ptime_start
attr(acc, "internal") <- list(series=series, order=order,
tol=tol, iter=iter, conv=conv)
attr(acc, "timings") <- do.call("rbind", timings)[, c(1, 3)]
acc
}
mat2listw <- function(x, row.names=NULL, style="M") {
if (!(is.matrix(x) || is(x, "sparseMatrix"))) stop("x is not a matrix")
n <- nrow(x)
if (n < 1) stop("non-positive number of entities")
m <- ncol(x)
if (n != m) stop("x must be a square matrix")
if (any(x < 0)) stop("values in x cannot be negative")
if (any(is.na(x))) stop("NA values in x not allowed")
if (!is.null(row.names)) {
if(length(row.names) != n)
stop("row.names wrong length")
if (length(unique(row.names)) != length(row.names))
stop("non-unique row.names given")
}
if (is.null(row.names)) {
if (!is.null(row.names(x))) {
row.names <- row.names(x)
} else {
row.names <- as.character(1:n)
}
}
# style <- "M"
if (is(x, "sparseMatrix")) {
xC <- as(x, "dgCMatrix")
i <- slot(xC, "i")+1
p <- slot(xC, "p")
dp <- diff(p)
rp <- rep(seq_along(dp), dp)
df0 <- data.frame(from=i, to=rp, weights=slot(xC, "x"))
o <- order(df0$from, df0$to)
df <- df0[o,]
class(df) <- c(class(df), "spatial.neighbour")
attr(df, "region.id") <- row.names
attr(df, "n") <- dim(xC)[1]
res <- sn2listw(df)
neighbours <- res$neighbours
weights <- res$weights
} else {
neighbours <- vector(mode="list", length=n)
weights <- vector(mode="list", length=n)
for (i in 1:n) {
nbs <- which(x[i,] > 0.0)
if (length(nbs) > 0) {
neighbours[[i]] <- nbs
weights[[i]] <- as.double(x[i, nbs]) # Laurajean Lewis
} else {
neighbours[[i]] <- 0L
}
}
}
attr(weights, "mode") <- "unknown" # Brian Rubineau
class(neighbours) <- "nb"
attr(neighbours, "region.id") <- row.names
attr(neighbours, "call") <- NA
attr(neighbours, "sym") <- is.symmetric.nb(neighbours,
verbose=FALSE, force=TRUE)
res <- list(style=style, neighbours=neighbours, weights=weights)
class(res) <- c("listw", "nb")
attr(res, "region.id") <- attr(neighbours, "region.id")
attr(res, "call") <- match.call()
if (style != "M") {
res <- nb2listw(res$neighbours, glist=res$weights, style=style,
zero.policy=TRUE)
}
res
}
|