1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54
|
% Copyright 2003 by Roger S. Bivand
\name{EBlocal}
\alias{EBlocal}
\title{Local Empirical Bayes estimator}
\description{
The function computes local empirical Bayes estimates for rates "shrunk" to a neighbourhood mean for neighbourhoods given by the \code{nb} neighbourhood list.
}
\usage{
EBlocal(ri, ni, nb, zero.policy = NULL, spChk = NULL, geoda=FALSE)
}
%- maybe also `usage' for other objects documented here.
\arguments{
\item{ri}{a numeric vector of counts of cases the same length as the neighbours list in nb}
\item{ni}{a numeric vector of populations at risk the same length as the neighbours list in nb}
\item{nb}{a \code{nb} object of neighbour relationships}
\item{zero.policy}{default NULL, use global option value; if TRUE assign zero to the lagged value of zones without neighbours, if FALSE assign NA}
\item{spChk}{should the data vector names be checked against the spatial objects for identity integrity, TRUE, or FALSE, default NULL to use \code{get.spChkOption()}}
\item{geoda}{default=FALSE, following Marshall's algorithm as interpreted by Bailey and Gatrell, pp. 305-307, and exercise 8.2, pp. 328-330 for the definition of phi; TRUE for the definition of phi used in GeoDa (see discussion on OpenSpace mailing list June 2003: http://agec221.agecon.uiuc.edu/pipermail/openspace/2003-June/thread.html)}
}
\details{
Details of the implementation are to be found in Marshall, p. 286, and Bailey and Gatrell p. 307 and exercise 8.2, pp. 328--330. The example results do not fully correspond to the sources because of slightly differing neighbourhoods, but are generally close.
}
\value{
A data frame with two columns:
\item{raw}{a numerical vector of raw (crude) rates}
\item{est}{a numerical vector of local empirical Bayes estimates}
and a \code{parameters} attribute list with components:
\item{a}{a numerical vector of local phi values}
\item{m}{a numerical vector of local gamma values}
}
\references{Marshall R M (1991) Mapping disease and mortality rates using Empirical Bayes Estimators, Applied Statistics, 40, 283--294; Bailey T, Gatrell A (1995) Interactive Spatial Data Analysis, Harlow: Longman, pp. 303--306.}
\author{Roger Bivand \email{Roger.Bivand@nhh.no}, based on contributions by Marilia Carvalho}
\seealso{\code{\link{EBest}}, \code{\link{probmap}}}
\examples{
if (require(rgdal, quietly=TRUE)) {
example(auckland, package="spData")
res <- EBlocal(auckland$M77_85, 9*auckland$Und5_81, auckland.nb)
if (require(classInt, quietly=TRUE)) {
cI <- classIntervals(res$est*1000, style="fixed",
fixedBreaks=c(-Inf,2,2.5,3,3.5,Inf))
fcI <- findColours(cI, pal=grey(6:2/7))
plot(auckland, col=fcI)
legend("bottomleft", fill=attr(fcI, "palette"),
legend=names(attr(fcI, "table")), bty="n")
title(main="Local moment estimator of infant mortality per 1000 per year")
}
}
}
\keyword{spatial}
|