File: MCMCsamp.Rd

package info (click to toggle)
r-cran-spdep 0.8-1%2Bdfsg-1
  • links: PTS, VCS
  • area: main
  • in suites: buster
  • size: 3,876 kB
  • sloc: ansic: 1,489; sh: 16; makefile: 2
file content (102 lines) | stat: -rw-r--r-- 4,734 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
\name{MCMCsamp}
\alias{MCMCsamp}
\alias{MCMCsamp.spautolm}
\alias{MCMCsamp.sarlm}
%- Also NEED an '\alias' for EACH other topic documented here.
\title{MCMC sample from fitted spatial regression}
\description{The \code{MCMCsamp} method uses \code{\link[LearnBayes]{rwmetrop}}, a random walk Metropolis algorithm, from \pkg{LearnBayes} to make MCMC samples from fitted maximum likelihood spatial regression models.}
\usage{
MCMCsamp(object, mcmc = 1L, verbose = NULL, ...)
\method{MCMCsamp}{spautolm}(object, mcmc = 1L, verbose = NULL, ...,
 burnin = 0L, scale=1, listw, control = list())
\method{MCMCsamp}{sarlm}(object, mcmc = 1L, verbose = NULL, ...,
    burnin=0L, scale=1, listw, listw2=NULL, control=list())}
%- maybe also 'usage' for other objects documented here.
\arguments{
  \item{object}{A spatial regression model object fitted by maximum likelihood with \code{\link{spautolm}}}
  \item{mcmc}{The number of MCMC iterations after burnin}
  \item{verbose}{default NULL, use global option value; if TRUE, reports progress}
  \item{\dots}{Arguments passed through}
  \item{burnin}{The number of burn-in iterations for the sampler}
  \item{scale}{a positive scale parameter}
  \item{listw, listw2}{\code{listw} objects created for example by \code{nb2listw}; should be the same object(s) used for fitting the model}
  \item{control}{list of extra control arguments - see \code{\link{spautolm}}}
}
\value{An object of class \dQuote{mcmc} suited to \pkg{coda}, with attributes: \dQuote{accept} acceptance rate; \dQuote{type} input ML fitted model type \dQuote{SAR}, \dQuote{CAR}, \dQuote{SMA}, \dQuote{lag}, \dQuote{mixed}, \dQuote{error}, \dQuote{sac}, \dQuote{sacmixed}; \dQuote{timings} run times}
\note{If the acceptance rate is below 0.05, a warning will be issued; consider increasing mcmc.}
\references{Jim Albert (2007) Bayesian Computation with R, Springer, New York, pp. 104-105.}
\author{Roger Bivand \email{Roger.Bivand@nhh.no}}

\seealso{\code{\link[LearnBayes]{rwmetrop}}, \code{\link{spautolm}}, \code{\link{lagsarlm}}, \code{\link{errorsarlm}}, \code{\link{sacsarlm}}}
\examples{
if (require(foreign, quietly=TRUE)) {
example(NY_data, package="spData")
\dontrun{
esar1f <- spautolm(Z ~ PEXPOSURE + PCTAGE65P + PCTOWNHOME, data=nydata,
 listw=listw_NY, family="SAR", method="eigen")
summary(esar1f)
res <- MCMCsamp(esar1f, mcmc=5000, burnin=500, listw=listw_NY)
summary(res)
esar1fw <- spautolm(Z ~ PEXPOSURE + PCTAGE65P + PCTOWNHOME, data=nydata,
 listw=listw_NY, weights=POP8, family="SAR", method="eigen")
summary(esar1fw)
res <- MCMCsamp(esar1fw, mcmc=5000, burnin=500, listw=listw_NY)
summary(res)
ecar1f <- spautolm(Z ~ PEXPOSURE + PCTAGE65P + PCTOWNHOME, data=nydata,
 listw=listw_NY, family="CAR", method="eigen")
summary(ecar1f)
res <- MCMCsamp(ecar1f, mcmc=5000, burnin=500, listw=listw_NY)
summary(res)
esar1fw <- spautolm(Z ~ PEXPOSURE + PCTAGE65P + PCTOWNHOME, data=nydata,
 listw=listw_NY, weights=POP8, family="SAR", method="eigen")
summary(esar1fw)
res <- MCMCsamp(esar1fw, mcmc=5000, burnin=500, listw=listw_NY)
summary(res)
ecar1fw <- spautolm(Z ~ PEXPOSURE + PCTAGE65P + PCTOWNHOME, data=nydata,
 listw=listw_NY, weights=POP8, family="CAR", method="eigen")
summary(ecar1fw)
res <- MCMCsamp(ecar1fw, mcmc=5000, burnin=500, listw=listw_NY)
summary(res)
}
esar0 <- errorsarlm(Z ~ PEXPOSURE + PCTAGE65P + PCTOWNHOME, data=nydata,
 listw=listw_NY)
summary(esar0)
res <- MCMCsamp(esar0, mcmc=5000, burnin=500, listw=listw_NY)
summary(res)
\dontrun{
esar0w <- errorsarlm(Z ~ PEXPOSURE + PCTAGE65P + PCTOWNHOME, data=nydata,
 listw=listw_NY, weights=POP8)
summary(esar0)
res <- MCMCsamp(esar0w, mcmc=5000, burnin=500, listw=listw_NY)
summary(res)
esar1 <- errorsarlm(Z ~ PEXPOSURE + PCTAGE65P + PCTOWNHOME, data=nydata,
 listw=listw_NY, etype="emixed")
summary(esar1)
res <- MCMCsamp(esar1, mcmc=5000, burnin=500, listw=listw_NY)
summary(res)
lsar0 <- lagsarlm(Z ~ PEXPOSURE + PCTAGE65P + PCTOWNHOME, data=nydata,
 listw=listw_NY)
summary(lsar0)
res <- MCMCsamp(lsar0, mcmc=5000, burnin=500, listw=listw_NY)
summary(res)
lsar1 <- lagsarlm(Z ~ PEXPOSURE + PCTAGE65P + PCTOWNHOME, data=nydata,
 listw=listw_NY, type="mixed")
summary(lsar1)
res <- MCMCsamp(lsar1, mcmc=5000, burnin=500, listw=listw_NY)
summary(res)
ssar0 <- sacsarlm(Z ~ PEXPOSURE + PCTAGE65P + PCTOWNHOME, data=nydata,
 listw=listw_NY)
summary(ssar0)
res <- MCMCsamp(ssar0, mcmc=5000, burnin=500, listw=listw_NY)
summary(res)
ssar1 <- sacsarlm(Z ~ PEXPOSURE + PCTAGE65P + PCTOWNHOME, data=nydata,
 listw=listw_NY, type="sacmixed")
summary(ssar1)
res <- MCMCsamp(ssar1, mcmc=5000, burnin=500, listw=listw_NY)
summary(res)
}
}
}
% Add one or more standard keywords, see file 'KEYWORDS' in the
% R documentation directory.
\keyword{spatial}