1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146
|
% Copyright 2001 by Nicholas Lewin-Koh
\name{graphneigh}
\alias{gabrielneigh}
\alias{relativeneigh}
\alias{soi.graph}
\alias{plot.Gabriel}
\alias{plot.relative}
\alias{graph2nb}
\title{Graph based spatial weights}
\description{
Functions return a graph object containing a list with the vertex
coordinates and the to and from indices defining the edges. Some/all of these functions assume that the coordinates are not exactly regularly spaced. The helper
function \code{graph2nb} converts a graph
object into a neighbour list. The plot functions plot the graph objects.
}
\usage{
gabrielneigh(coords, nnmult=3)
relativeneigh(coords, nnmult=3)
%beta.skel(coords,beta)
soi.graph(tri.nb, coords, quadsegs=10)
graph2nb(gob, row.names=NULL,sym=FALSE)
\method{plot}{Gabriel}(x, show.points=FALSE, add=FALSE, linecol=par(col), ...)
\method{plot}{relative}(x, show.points=FALSE, add=FALSE, linecol=par(col),...)
}
\arguments{
\item{coords}{matrix of region point coordinates}
\item{nnmult}{scaling factor for memory allocation, default 3; if higher values are required, the function will exit with an error; example below thanks to Dan Putler}
\item{tri.nb}{a neighbor list created from tri2nb}
\item{quadsegs}{number of line segments making a quarter circle buffer, see \code{\link[rgeos]{gBuffer}}}
% \item{beta}{the parameter for a beta skeleton}
\item{gob}{a graph object created from any of the graph funtions}
\item{row.names}{character vector of region ids to be added to the
neighbours list as attribute \code{region.id}, default \code{seq(1,
nrow(x))}}
\item{sym}{a logical argument indicating whether or not neighbors
should be symetric (if i->j then j->i)}
\item{x}{object to be plotted}
\item{show.points}{(logical) add points to plot}
\item{add}{(logical) add to existing plot}
\item{linecol}{edge plotting colour}
\item{...}{further graphical parameters as in \code{par(..)}}
}
\details{
The graph functions produce graphs on a 2d point set that
%except for
%some values of \eqn{ \beta (\beta < 1)}{\beta (\beta < 1)} in the
%beta-skeleton,
are all subgraphs of the Delaunay triangulation. The
relative neighbor graph is defined by the relation, x and y are neighbors if
\deqn{d(x,y) \le min(max(d(x,z),d(y,z))| z \in S)}{d(x,y) <= min(max(d(x,z),d(y,z))| z in S)}
where d() is the distance, S is the set of points and z is an arbitrary
point in S. The Gabriel graph is a subgraph of the delaunay
triangulation and has the relative neighbor graph as a sub-graph. The
relative neighbor graph is defined by the relation x and y are Gabriel
neighbors if
\deqn{d(x,y) \le min((d(x,z)^2 + d(y,z)^2)^{1/2} |z \in S)}{d(x,y) <= min((d(x,z)^2 + d(y,z)^2)^1/2 |z in S)}
where x,y,z and S are as before. The sphere of influence graph is
defined for a finite point set S, let \eqn{r_x} be the distance from point x
to its nearest neighbor in S, and \eqn{C_x} is the circle centered on x. Then
x and y are SOI neigbors iff \eqn{C_x} and \eqn{C_y} intersect in at
least 2 places. From 2016-05-31, Computational Geometry in C code replaced by calls to functions in \pkg{RANN} and \pkg{rgeos}; with a large \code{quadsegs=} argument, the behaviour of the function is the same, otherwise buffer intersections only closely approximate the original function.
%The \eqn{beta}{\beta}
See \code{\link{card}} for details of \dQuote{nb} objects.
}
\value{
A list of class \code{Graph} withte following elements
\item{np}{number of input points}
\item{from}{array of origin ids}
\item{to}{array of destination ids}
\item{nedges}{number of edges in graph}
\item{x}{input x coordinates}
\item{y}{input y coordinates}
The helper functions return an \code{nb} object with a list of integer
vectors containing neighbour region number ids.
}
\references{
Matula, D. W. and Sokal R. R. 1980, Properties of Gabriel
graphs relevant to geographic variation research and the clustering of
points in the plane, Geographic Analysis, 12(3), pp. 205-222.
Toussaint, G. T. 1980, The relative neighborhood graph of a finite
planar set, Pattern Recognition, 12(4), pp. 261-268.
Kirkpatrick, D. G. and Radke, J. D. 1985, A framework for
computational morphology. In Computational Geometry,
Ed. G. T. Toussaint, North Holland.
}
\author{Nicholas Lewin-Koh \email{nikko@hailmail.net}}
\seealso{\code{\link{knearneigh}}, \code{\link{dnearneigh}},
\code{\link{knn2nb}}, \code{\link{card}}}
\examples{
if (require(rgdal, quietly=TRUE)) {
example(columbus, package="spData")
coords <- coordinates(columbus)
par(mfrow=c(2,2))
col.tri.nb<-tri2nb(coords)
col.gab.nb<-graph2nb(gabrielneigh(coords), sym=TRUE)
col.rel.nb<- graph2nb(relativeneigh(coords), sym=TRUE)
plot(columbus, border="grey")
plot(col.tri.nb,coords,add=TRUE)
title(main="Delaunay Triangulation")
plot(columbus, border="grey")
plot(col.gab.nb, coords, add=TRUE)
title(main="Gabriel Graph")
plot(columbus, border="grey")
plot(col.rel.nb, coords, add=TRUE)
title(main="Relative Neighbor Graph")
plot(columbus, border="grey")
if (require(rgeos, quietly=TRUE) && require(RANN, quietly=TRUE)) {
col.soi.nb<- graph2nb(soi.graph(col.tri.nb,coords), sym=TRUE)
plot(col.soi.nb, coords, add=TRUE)
title(main="Sphere of Influence Graph")
}
par(mfrow=c(1,1))
dx <- rep(0.25*0:4,5)
dy <- c(rep(0,5),rep(0.25,5),rep(0.5,5), rep(0.75,5),rep(1,5))
m <- cbind(c(dx, dx, 3+dx, 3+dx), c(dy, 3+dy, dy, 3+dy))
try(res <- gabrielneigh(m))
res <- gabrielneigh(m, nnmult=4)
summary(graph2nb(res))
grd <- as.matrix(expand.grid(x=1:5, y=1:5)) #gridded data
r2 <- gabrielneigh(grd)
set.seed(1)
grd1 <- as.matrix(expand.grid(x=1:5, y=1:5)) + matrix(runif(50, .0001, .0006), nrow=25)
r3 <- gabrielneigh(grd1)
opar <- par(mfrow=c(1,2))
plot(r2, show=TRUE, linecol=2)
plot(r3, show=TRUE, linecol=2)
par(opar)
}
}
\keyword{spatial}
|