1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55
|
\name{ssw}
\alias{ssw}
%- Also NEED an '\alias' for EACH other topic documented here.
\title{Compute the sum of dissimilarity}
\description{
This function computes the sum of dissimilarity between each
observation and the mean (scalar of vector) of the observations.
}
\usage{
ssw(data, id, method = c("euclidean", "maximum",
"manhattan", "canberra", "binary", "minkowski",
"mahalanobis"), p = 2, cov, inverted = FALSE)
}
%- maybe also 'usage' for other objects documented here.
\arguments{
\item{data}{A matrix with observations in the nodes.}
\item{id}{Node index to compute the cost}
\item{method}{Character or function to declare distance method.
If \code{method} is character, method must be "mahalanobis" or
"euclidean", "maximum", "manhattan", "canberra", "binary"
or "minkowisk".
If \code{method} is one of "euclidean", "maximum",
"manhattan", "canberra", "binary" or "minkowisk", see
\code{\link{dist}} for details,
because this function as used to compute the distance.
If \code{method="mahalanobis"}, the mahalanobis distance
is computed between neighbour areas.
If \code{method} is a \code{function}, this function is
used to compute the distance.}
\item{p}{The power of the Minkowski distance.}
\item{cov}{The covariance matrix used to compute the mahalanobis
distance.}
\item{inverted}{logical. If 'TRUE', 'cov' is supposed to contain the
inverse of the covariance matrix.}
}
%\details{}
\value{
A numeric, the sum of dissimilarity between the observations
\code{id} of \code{data} and the mean (scalar of vector) of
this observations.
}
%%\references{ ~put references to the literature/web site here ~ }
\author{Elias T. Krainski and Renato M. Assuncao}
%%\note{}
\seealso{See Also as \code{\link{nbcost}}}
\examples{
data(USArrests)
n <- nrow(USArrests)
ssw(USArrests, 1:n)
ssw(USArrests, 1:(n/2))
ssw(USArrests, (n/2+1):n)
ssw(USArrests, 1:(n/2)) + ssw(USArrests, (n/2+1):n)
}
\keyword{cluster}
\keyword{multivariate}% __ONLY ONE__ keyword per line
|