1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71
|
% Copyright 2002-9 by Roger S. Bivand
\name{summary.sarlm}
\alias{summary.sarlm}
\alias{print.sarlm}
\alias{print.summary.sarlm}
%- Also NEED an `\alias' for EACH other topic documented here.
\title{summary method for class sarlm}
\description{
Methods used for presenting the results of estimating spatial SAR models.
}
\usage{
\method{summary}{sarlm}(object, correlation = FALSE, Nagelkerke = FALSE, Hausman=FALSE, adj.se=FALSE, ...)
\method{print}{sarlm}(x, ...)
\method{print}{summary.sarlm}(x, digits = max(5, .Options$digits - 3),
signif.stars = FALSE, ...)
}
%- maybe also `usage' for other objects documented here.
\arguments{
\item{object}{\code{sarlm} object from \code{lagsarlm} or \code{errorsarlm}}
\item{correlation}{logical; if 'TRUE', the correlation matrix of the estimated parameters including sigma is returned and printed (default=FALSE)}
\item{Nagelkerke}{if TRUE, the Nagelkerke pseudo R-squared is reported}
\item{Hausman}{if TRUE, the results of the Hausman test for error models are reported}
\item{adj.se}{if TRUE, adjust the coefficient standard errors for the number of fitted coefficients}
\item{x}{\code{sarlm} object from \code{lagsarlm} or \code{errorsarlm} in
\code{print.sarlm}, summary object from \code{summary.sarlm} for
\code{print.summary.sarlm}}
\item{digits}{the number of significant digits to use when printing}
\item{signif.stars}{logical. If TRUE, "significance stars" are printed
for each coefficient.}
\item{\dots}{further arguments passed to or from other methods}
}
\value{
%FIXME
The summary function \code{summary.sarlm} returns the \code{sarlm}
object augmented with a coefficient matrix with probability values
for coefficient asymptotic standard errors for type="error" and for
type="lag" or "mixed" when object\$ase=TRUE, or a coefficient matrix
with probability values for likelihood ratio tests between the model as
reported and models with independent variables dropped in turn.
}
\references{Cliff, A. D., Ord, J. K. 1981 \emph{Spatial processes}, Pion;
Ord, J. K. 1975 Estimation methods for models of spatial interaction,
\emph{Journal of the American Statistical Association}, 70, 120-126;
Anselin, L. 1988 \emph{Spatial econometrics: methods and models.}
(Dordrecht: Kluwer); Anselin, L. 1995 SpaceStat, a software program for
the analysis of spatial data, version 1.80. Regional Research Institute,
West Virginia University, Morgantown, WV (\url{www.spacestat.com});
Anselin L, Bera AK (1998) Spatial dependence in linear regression models
with an introduction to spatial econometrics. In: Ullah A, Giles DEA
(eds) Handbook of applied economic statistics. Marcel Dekker, New York,
pp. 237-289; Nagelkerke NJD (1991) A note on a general definition of the
coefficient of determination. Biometrika 78: 691-692.}
\author{Roger Bivand \email{Roger.Bivand@nhh.no}}
\seealso{\code{\link{errorsarlm}}, \code{\link{lagsarlm}},
\code{\link{summary.lm}}}
\examples{
data(oldcol)
COL.mix.eig <- lagsarlm(CRIME ~ INC + HOVAL, data=COL.OLD,
nb2listw(COL.nb), type="mixed", method="eigen")
summary(COL.mix.eig, correlation=TRUE, Nagelkerke=TRUE)
COL.mix.M <- lagsarlm(CRIME ~ INC + HOVAL, data=COL.OLD,
nb2listw(COL.nb), type="mixed", method="Matrix")
summary(COL.mix.M, correlation=TRUE, Nagelkerke=TRUE)
COL.errW.eig <- errorsarlm(CRIME ~ INC + HOVAL, data=COL.OLD,
nb2listw(COL.nb, style="W"), method="eigen")
summary(COL.errW.eig, correlation=TRUE, Nagelkerke=TRUE, Hausman=TRUE)
}
\keyword{spatial}
|