1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204
|
\name{skater}
\alias{skater}
%- Also NEED an '\alias' for EACH other topic documented here.
\title{Spatial 'K'luster Analysis by Tree Edge Removal}
\description{
This function implements a SKATER procedure for spatial clustering
analysis. This procedure essentialy begins with an edges set, a data set and
a number of cuts. The output is an object of 'skater' class and is
valid for input again.
}
\usage{
skater(edges, data, ncuts, crit, vec.crit, method = c("euclidean",
"maximum", "manhattan", "canberra", "binary", "minkowski",
"mahalanobis"), p = 2, cov, inverted = FALSE)
}
%- maybe also 'usage' for other objects documented here.
\arguments{
\item{edges}{A matrix with 2 colums with each row is an edge}
\item{data}{A data.frame with data observed over nodes.}
\item{ncuts}{The number of cuts}
\item{crit}{A scalar ow two dimensional vector with with
criteria for groups. Examples: limits of group size or
limits of population size. If scalar, is the minimum
criteria for groups.}
\item{vec.crit}{A vector for evaluating criteria.}
\item{method}{Character or function to declare distance method.
If \code{method} is character, method must be "mahalanobis" or
"euclidean", "maximum", "manhattan", "canberra", "binary"
or "minkowisk".
If \code{method} is one of "euclidean", "maximum",
"manhattan", "canberra", "binary" or "minkowski", see
\code{\link{dist}} for details,
because this function as used to compute the distance.
If \code{method="mahalanobis"}, the mahalanobis distance
is computed between neighbour areas.
If \code{method} is a \code{function}, this function is
used to compute the distance.}
\item{p}{The power of the Minkowski distance.}
\item{cov}{The covariance matrix used to compute the mahalanobis
distance.}
\item{inverted}{logical. If 'TRUE', 'cov' is supposed to contain the
inverse of the covariance matrix.}
}
\value{
A object of \code{skater} class with:
\item{groups}{A vector with length equal the number of nodes. Each
position identifies the group of node}
\item{edges.groups}{A list of length equal the number of groups with
each element is a set of edges}
\item{not.prune}{A vector identifying the groups with are not
candidates to partition.}
\item{candidates}{A vector identifying the groups with are candidates
to partition.}
\item{ssto}{The total dissimilarity in each step of edge removal.}
}
\references{
Assuncao, R.M., Lage J.P., and Reis, E.A. (2002). Analise de
conglomerados espaciais via arvore geradora minima. Revista Brasileira
de Estatistica, 62, 1-23.
Assuncao, R. M, Neves, M. C., Camara, G. and Freitas, C. da
C. (2006). Efficient regionalization techniques for socio-economic
geographical units using minimum spanning trees. International Journal
of Geographical Information Science Vol. 20, No. 7, August 2006,
797-811
}
\author{Renato M. Assuncao and Elias T. Krainski}
%%\note{}
\seealso{See Also as \code{\link{mstree}}}
\examples{
### loading data
bh <- st_read(system.file("etc/shapes/bhicv.shp",
package="spdep")[1], quiet=TRUE)
st_crs(bh) <- "+proj=longlat +ellps=WGS84"
### data standardized
dpad <- data.frame(scale(as.data.frame(bh)[,5:8]))
### neighboorhod list
bh.nb <- poly2nb(bh)
### calculating costs
lcosts <- nbcosts(bh.nb, dpad)
### making listw
nb.w <- nb2listw(bh.nb, lcosts, style="B")
### find a minimum spanning tree
mst.bh <- mstree(nb.w,5)
### the mstree plot
par(mar=c(0,0,0,0))
plot(st_geometry(bh), border=gray(.5))
plot(mst.bh, coordinates(as(bh, "Spatial")), col=2,
cex.lab=.6, cex.circles=0.035, fg="blue", add=TRUE)
### three groups with no restriction
res1 <- skater(mst.bh[,1:2], dpad, 2)
### groups size
table(res1$groups)
### the skater plot
opar <- par(mar=c(0,0,0,0))
plot(res1, coordinates(as(bh, "Spatial")), cex.circles=0.035, cex.lab=.7)
### the skater plot, using other colors
plot(res1, coordinates(as(bh, "Spatial")), cex.circles=0.035, cex.lab=.7,
groups.colors=heat.colors(length(res1$ed)))
### the Spatial Polygons plot
plot(st_geometry(bh), col=heat.colors(length(res1$edg))[res1$groups])
par(opar)
### EXPERT OPTIONS
### more one partition
res1b <- skater(res1, dpad, 1)
### length groups frequency
table(res1$groups)
table(res1b$groups)
### thee groups with minimum population
res2 <- skater(mst.bh[,1:2], dpad, 2, 200000, bh$Pop)
table(res2$groups)
### thee groups with minimun number of areas
res3 <- skater(mst.bh[,1:2], dpad, 2, 3, rep(1,nrow(bh)))
table(res3$groups)
### thee groups with minimun and maximun number of areas
res4 <- skater(mst.bh[,1:2], dpad, 2, c(20,50), rep(1,nrow(bh)))
table(res4$groups)
### if I want to get groups with 20 to 40 elements
res5 <- skater(mst.bh[,1:2], dpad, 2,
c(20,40), rep(1,nrow(bh))) ## DON'T MAKE DIVISIONS
table(res5$groups)
### In this MST don't have groups with this restrictions
### In this case, first I do one division
### with the minimun criteria
res5a <- skater(mst.bh[,1:2], dpad, 1, 20, rep(1,nrow(bh)))
table(res5a$groups)
### and do more one division with the full criteria
res5b <- skater(res5a, dpad, 1, c(20, 40), rep(1,nrow(bh)))
table(res5b$groups)
### and do more one division with the full criteria
res5c <- skater(res5b, dpad, 1, c(20, 40), rep(1,nrow(bh)))
table(res5c$groups)
### It don't have another divison with this criteria
res5d <- skater(res5c, dpad, 1, c(20, 40), rep(1,nrow(bh)))
table(res5d$groups)
\dontrun{
data(boston, package="spData")
bh.nb <- boston.soi
dpad <- data.frame(scale(boston.c[,c(7:10)]))
### calculating costs
system.time(lcosts <- nbcosts(bh.nb, dpad))
### making listw
nb.w <- nb2listw(bh.nb, lcosts, style="B")
### find a minimum spanning tree
mst.bh <- mstree(nb.w,5)
### three groups with no restriction
system.time(res1 <- skater(mst.bh[,1:2], dpad, 2))
library(parallel)
nc <- detectCores(logical=FALSE)
# set nc to 1L here
if (nc > 1L) nc <- 1L
coresOpt <- get.coresOption()
invisible(set.coresOption(nc))
if(!get.mcOption()) {
# no-op, "snow" parallel calculation not available
cl <- makeCluster(get.coresOption())
set.ClusterOption(cl)
}
### calculating costs
system.time(plcosts <- nbcosts(bh.nb, dpad))
all.equal(lcosts, plcosts, check.attributes=FALSE)
### making listw
pnb.w <- nb2listw(bh.nb, plcosts, style="B")
### find a minimum spanning tree
pmst.bh <- mstree(pnb.w,5)
### three groups with no restriction
system.time(pres1 <- skater(pmst.bh[,1:2], dpad, 2))
if(!get.mcOption()) {
set.ClusterOption(NULL)
stopCluster(cl)
}
all.equal(res1, pres1, check.attributes=FALSE)
invisible(set.coresOption(coresOpt))
}
}
% Add one or more standard keywords, see file 'KEYWORDS' in the
% R documentation directory.
\keyword{cluster}
\keyword{tree}% __ONLY ONE__ keyword per line
|