1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717
|
---
title: "“The Problem of Spatial Autocorrelation:” forty years on"
author: "Roger Bivand"
output:
html_document:
toc: true
toc_float:
collapsed: false
smooth_scroll: false
toc_depth: 2
bibliography: refs.bib
vignette: >
%\VignetteIndexEntry{The Problem of Spatial Autocorrelation:” forty years on}
%\VignetteEngine{knitr::rmarkdown}
%\VignetteEncoding{UTF-8}
---
```{r setup, include=FALSE}
knitr::opts_chunk$set(message = FALSE, warning = FALSE)
```
## Introduction
@cliff+ord:69, published forty years ago, marked a turning point in the
treatment of spatial autocorrelation in quantitative geography. It
provided the framework needed by any applied researcher to attempt an
implementation for a different system, possibly using a different
programming language. In this spirit, here we examine how spatial
weights have been represented in implementations and may be reproduced,
how the tabulated results in the paper may be reproduced, and how they
may be extended to cover simulation.
One of the major assertions of @cliff+ord:69 is that their statistic
advances the measurement of spatial autocorrelation with respect to
@moran:50 and @geary:54 because a more general specification of spatial
weights could be used. This more general form has implications both for
the preparation of the weights themselves, and for the calculation of
the measures. We will look at spatial weights first, before moving on to
consider the measures presented in the paper and some of their
subsequent developments. Before doing this, we will put together a data
set matching that used in @cliff+ord:69. They provide tabulated data for
the counties of the Irish Republic, but omit Dublin from analyses. A
shapefile included in this package, kindly made available by Michael
Tiefelsdorf, is used as a starting point:
```{r echo=TRUE,eval=TRUE,results='hide'}
library(spdep)
if (require(rgdal, quietly=TRUE)) {
eire <- readOGR(system.file("shapes/eire.shp", package="spData")[1])
} else {
require(maptools, quietly=TRUE)
eire <- readShapeSpatial(system.file("shapes/eire.shp", package="spData")[1])
}
row.names(eire) <- as.character(eire$names)
proj4string(eire) <- CRS("+proj=utm +zone=30 +ellps=airy +units=km")
```
```{r echo=TRUE,eval=TRUE}
class(eire)
names(eire)
```
and read into a SpatialPolygonsDataFrame — classes used for handling
spatial data in are fully described in @bivandetal:08. To this we need
to add the data tabulated in the paper in Table 2,[^1] p. 40, here in
the form of a text file with added rainfall values from Table 9, p. 49:
```{r echo=TRUE,eval=TRUE}
fn <- system.file("etc/misc/geary_eire.txt", package="spdep")[1]
ge <- read.table(fn, header=TRUE)
names(ge)
```
Since we assigned the county names as feature identifiers when reading
the shapefiles, we do the same with the extra data, and combine the
objects:
```{r echo=TRUE,eval=TRUE}
row.names(ge) <- as.character(ge$county)
all.equal(row.names(ge), row.names(eire))
library(maptools)
eire_ge <- spCbind(eire, ge)
```
Finally, we need to drop the Dublin county omitted in the analyses
conducted in @cliff+ord:69:
```{r echo=TRUE,eval=TRUE}
eire_ge1 <- eire_ge[!(row.names(eire_ge) %in% "Dublin"),]
length(row.names(eire_ge1))
```
To double-check our data, let us calculate the sample Beta coefficients,
using the formulae given in the paper for sample moments:
```{r echo=TRUE,eval=TRUE}
skewness <- function(z) {z <- scale(z, scale=FALSE); ((sum(z^3)/length(z))^2)/((sum(z^2)/length(z))^3)}
kurtosis <- function(z) {z <- scale(z, scale=FALSE); (sum(z^4)/length(z))/((sum(z^2)/length(z))^2)}
```
These differ somewhat from the ways in which skewness and kurtosis are
computed in modern statistical software, see for example
@joanes+gill:98. However, for our purposes, they let us reproduce Table
3, p. 42:
```{r echo=TRUE,eval=TRUE}
print(sapply(as(eire_ge1, "data.frame")[13:24], skewness), digits=3)
print(sapply(as(eire_ge1, "data.frame")[13:24], kurtosis), digits=4)
print(sapply(as(eire_ge1, "data.frame")[c(13,16,18,19)], function(x) skewness(log(x))), digits=3)
print(sapply(as(eire_ge1, "data.frame")[c(13,16,18,19)], function(x) kurtosis(log(x))), digits=4)
```
Using the tabulated value of $23.6$ for the percentage of agricultural
holdings above 50 in 1950 in Waterford, the skewness and kurtosis cannot
be reproduced, but by comparison with the [`irishdata`]{} dataset in ,
it turns out that the value should rather be $26.6$, which yields the
tabulated skewness and kurtosis values.
Before going on, the variables considered are presented in Table
\[vars\].
variable description
---------------- -----------------------------------------------------------------------------
pagval2\_10 Percentage number agricultural holdings in valuation group £2–£10 (1950)
pagval10\_50 Percentage number agricultural holdings in valuation group £10–£50 (1950)
pagval50p Percentage number agricultural holdings in valuation group above £50 (1950)
cowspacre Milch cows per 1000 acres crops and pasture (1952)
ocattlepacre Other cattle per 1000 acres crops and pasture (1952)
pigspacre Pigs per 1000 acres crops and pasture (1952)
sheeppacre Sheep per 1000 acres crops and pasture (1952)
townvillp Town and village population as percentage of total (1951)
carspcap Private cars registered per 1000 population (1952)
radiopcap Radio licences per 1000 population (1952)
retailpcap Retail sales £ per person (1951)
psinglem30\_34 Single males as percentage of all males aged 30–34 (1951)
rainfall Average of rainfall for stations in Ireland, 1916–1950, mm
: Description of variables in the Geary data set.[]{data-label="vars"}
## Spatial weights
As a basis for comparison, we will first read the unstandardised
weighting matrix given in Table A1, p. 54, of the paper, reading a file
corrected for the misprint giving O rather than D as a neighbour of V:
```{r echo=TRUE,eval=TRUE}
fn <- system.file("etc/misc/unstand_sn.txt", package="spdep")[1]
unstand <- read.table(fn, header=TRUE)
summary(unstand)
```
In the file, the counties are represented by their serial letters, so
ordering and conversion to integer index representation is required to
reach a representation similar to that of the SpatialStats module for
spatial neighbours:
```{r echo=TRUE,eval=TRUE}
class(unstand) <- c("spatial.neighbour", class(unstand))
of <- ordered(unstand$from)
attr(unstand, "region.id") <- levels(of)
unstand$from <- as.integer(of)
unstand$to <- as.integer(ordered(unstand$to))
attr(unstand, "n") <- length(unique(unstand$from))
```
Having done this, we can change its representation to a [`listw`]{}
object, assigning an appropriate style (generalised binary) for
unstandardised values:
```{r echo=TRUE,eval=TRUE}
lw_unstand <- sn2listw(unstand)
lw_unstand$style <- "B"
lw_unstand
```
Note that the values of S0, S1, and S2 correspond closely with those
given on page 42 of the paper, $0.84688672$, $0.01869986$ and
$0.12267319$. The discrepancies appear to be due to rounding in the
printed table of weights.
The contiguous neighbours represented in this object ought to match
those found using [`poly2nb`]{}. However, we see that the reproduced
contiguities have a smaller link count:
```{r echo=TRUE,eval=TRUE}
nb <- poly2nb(eire_ge1)
nb
```
The missing link is between Clare and Kerry, perhaps by the
Tarbert–Killimer ferry, but the counties are not contiguous, as Figure
\[plot\_nb\] shows:
```{r echo=TRUE,eval=TRUE}
xx <- diffnb(nb, lw_unstand$neighbours, verbose=TRUE)
```
```{r echo=TRUE,eval=FALSE,results='hide'}
plot(eire_ge1, border="grey60")
plot(nb, coordinates(eire_ge1), add=TRUE, pch=".", lwd=2)
plot(xx, coordinates(eire_ge1), add=TRUE, pch=".", lwd=2, col=3)
```
```{r eval=TRUE,echo=FALSE, fig.cap="County boundaries and contiguities"}
par(mfrow=c(1,2))
plot(eire_ge1, border="grey40")
title(xlab="25 Irish counties")
text(coordinates(eire_ge1), labels=as.character(eire_ge1$serlet), cex=0.8)
plot(eire_ge1, border="grey60")
title(xlab="Contiguities")
plot(nb, coordinates(eire_ge1), add=TRUE, pch=".", lwd=2)
plot(xx, coordinates(eire_ge1), add=TRUE, pch=".", lwd=2, col=3)
legend("topleft", legend=c("Contiguous", "Ferry"), lwd=2, lty=1, col=c(1,3), bty="n", cex=0.7)
par(mfrow=c(1,1))
```
An attempt has also been made to reproduce the generalised weights for
25 Irish counties reported by @cliff+ord:69, after Dublin is omitted.
Reproducing the inverse distance component $d_{ij}^{-1}$ of the
generalised weights $d_{ij}^{-1} \beta_{i(j)}$ is eased by the statement
in @cliff+ord:73 [p. 55] that the points chosen to represent the
counties were their “geographic centres,” so not very different from the
centroids yielded by applying a chosen computational geometry function.
The distance metric is not given, and may have been in kilometers or
miles — both were tried, but the results were not sensitive to the
difference as it applies equally across the weights; miles are used
here. Computing the proportion of shared distance measure $\beta_{i(j)}$
is harder, because it requires the availability of the full topology of
the input polygons. @bivandetal:08 [p. 244] show how to employ the
[`vect2neigh`]{} function (written by Markus Neteler) in the package
when using GRASS GIS vector handling to create a full topology from
spaghetti vector data and to extract border segment lengths; a similar
approach also is mentioned there using ArcGIS coverages for the same
purpose. GRASS was used to create the topology, and next the proportion
of shared distance measure was calculated.
```{r echo=FALSE,eval=TRUE}
load(system.file("etc/misc/raw_grass_borders.RData", package="spdep")[1])
```
```{r echo=TRUE,eval=FALSE,results='hide'}
library(maptools)
SG <- Sobj_SpatialGrid(eire_ge1)$SG
library(spgrass6)
grass_home <- "/home/rsb/topics/grass/g64/grass-6.4.0svn"
initGRASS(grass_home, home=tempdir(), SG=SG, override=TRUE)
writeVECT6(eire_ge1, "eire", v.in.ogr_flags=c("o", "overwrite"))
res <- vect2neigh("eire", ID="serlet")
```
```{r echo=TRUE,eval=TRUE}
grass_borders <- sn2listw(res)
raw_borders <- grass_borders$weights
int_tot <- attr(res, "total") - attr(res, "external")
prop_borders <- lapply(1:length(int_tot), function(i) raw_borders[[i]]/int_tot[i])
dlist <- nbdists(grass_borders$neighbours, coordinates(eire_ge1))
inv_dlist <- lapply(dlist, function(x) 1/(x/1.609344))
combo_km <- lapply(1:length(inv_dlist), function(i) inv_dlist[[i]]*prop_borders[[i]])
combo_km_lw <- nb2listw(grass_borders$neighbours, glist=combo_km, style="B")
summary(combo_km_lw)
```
To compare, we need to remove the Tarbert–Killimer ferry link manually,
and view the summary of the original weights, as well as a correlation
coefficient between these and the reconstructed weights. Naturally,
unless the boundary coordinates used here are identical with those in
the original analysis, presumably measured by hand, small differences
will occur.
```{r echo=TRUE,eval=TRUE}
red_lw_unstand <- lw_unstand
Clare <- which(attr(lw_unstand, "region.id") == "C")
Kerry <- which(attr(lw_unstand, "region.id") == "H")
Kerry_in_Clare <- which(lw_unstand$neighbours[[Clare]] == Kerry)
Clare_in_Kerry <- which(lw_unstand$neighbours[[Kerry]] == Clare)
red_lw_unstand$neighbours[[Clare]] <- red_lw_unstand$neighbours[[Clare]][-Kerry_in_Clare]
red_lw_unstand$neighbours[[Kerry]] <- red_lw_unstand$neighbours[[Kerry]][-Clare_in_Kerry]
red_lw_unstand$weights[[Clare]] <- red_lw_unstand$weights[[Clare]][-Kerry_in_Clare]
red_lw_unstand$weights[[Kerry]] <- red_lw_unstand$weights[[Kerry]][-Clare_in_Kerry]
summary(red_lw_unstand)
cor(unlist(red_lw_unstand$weights), unlist(combo_km_lw$weights))
```
Even though the differences in the general weights, for identical
contiguities, are so small, the consequences for the measure of spatial
autocorrelation are substantial, Here we use the fifth variable, other
cattle per 1000 acres crops and pasture (1952), and see that the
reconstructed weights seem to “reveal” more autocorrelation than the
original weights.
```{r echo=TRUE,eval=TRUE}
flatten <- function(x, digits=3, statistic="I") {
res <- c(format(x$estimate, digits=digits),
format(x$statistic, digits=digits),
format.pval(x$p.value, digits=digits))
res <- matrix(res, ncol=length(res))
colnames(res) <- paste(c("", "E", "V", "SD_", "P_"), "I", sep="")
rownames(res) <- deparse(substitute(x))
res
}
`reconstructed weights` <- moran.test(eire_ge1$ocattlepacre, combo_km_lw)
`original weights` <- moran.test(eire_ge1$ocattlepacre, red_lw_unstand)
print(rbind(flatten(`reconstructed weights`), flatten(`original weights`)), quote=FALSE)
```
## Measures of spatial autocorrelation
Our targets for reproduction are Tables 4 and 5 in @cliff+ord:69 [pp.
43–44], the first containing standard deviates under normality and
randomisation for the original Moran measure with binary weights, the
original Geary measure with binary weights, the proposed measure with
unstandardised general weights, and the proposed measure with
row-standardised general weights. In addition, four variables were
log-transformed on the basis of the skewness and kurtosis results
presented above. We carry out the transformation of these variables, and
generate additional binary and row-standardised general spatial weights
objects — note that the weights constants for the row-standardised
general weights agree with those given on p. 42 in the paper, after
allowing for small differences due to rounding in the weights values
displayed in the paper (p. 54):
```{r echo=TRUE,eval=TRUE}
eire_ge1$ln_pagval2_10 <- log(eire_ge1$pagval2_10)
eire_ge1$ln_cowspacre <- log(eire_ge1$cowspacre)
eire_ge1$ln_pigspacre <- log(eire_ge1$pigspacre)
eire_ge1$ln_sheeppacre <- log(eire_ge1$sheeppacre)
vars <- c("pagval2_10", "ln_pagval2_10", "pagval10_50", "pagval50p",
"cowspacre", "ln_cowspacre", "ocattlepacre", "pigspacre",
"ln_pigspacre", "sheeppacre", "ln_sheeppacre", "townvillp",
"carspcap", "radiopcap", "retailpcap", "psinglem30_34")
nb_B <- nb2listw(lw_unstand$neighbours, style="B")
nb_B
lw_std <- nb2listw(lw_unstand$neighbours, glist=lw_unstand$weights, style="W")
lw_std
```
The standard representation of the measures is:
$$I = \frac{n}{\sum_{i=1}^{n}\sum_{j=1}^{n}w_{ij}}
\frac{\sum_{i=1}^{n}\sum_{j=1}^{n}w_{ij}(x_i-\bar{x})(x_j-\bar{x})}{\sum_{i=1}^{n}(x_i - \bar{x})^2}$$
for Moran’s $I$ — in the paper termed the proposed statistic, and for
Geary’s $C$:
$$C = \frac{(n-1)}{2\sum_{i=1}^{n}\sum_{j=1}^{n}w_{ij}}
\frac{\sum_{i=1}^{n}\sum_{j=1}^{n}w_{ij}(x_i-x_j)^2}{\sum_{i=1}^{n}(x_i - \bar{x})^2}$$
where $x_i, i=1, \ldots, n$ are $n$ observations on the numeric variable
of interest, and $w_{ij}$ are the spatial weights. In order to reproduce
the standard deviates given in the paper, it is sufficient to apply
[`moran.test`]{} to the variables with three different spatial weights
objects, and two different values of the [`randomisation=`]{} argument.
In addition, [`geary.test`]{} is applied to a single spatial weights
objects, and two different values of the [`randomisation=`]{} argument.
```{r echo=TRUE,eval=TRUE}
system.time({
MoranN <- lapply(vars, function(x) moran.test(eire_ge1[[x]], listw=nb_B, randomisation=FALSE))
MoranR <- lapply(vars, function(x) moran.test(eire_ge1[[x]], listw=nb_B, randomisation=TRUE))
GearyN <- lapply(vars, function(x) geary.test(eire_ge1[[x]], listw=nb_B, randomisation=FALSE))
GearyR <- lapply(vars, function(x) geary.test(eire_ge1[[x]], listw=nb_B, randomisation=TRUE))
Prop_unstdN <- lapply(vars, function(x) moran.test(eire_ge1[[x]], listw=lw_unstand, randomisation=FALSE))
Prop_unstdR <- lapply(vars, function(x) moran.test(eire_ge1[[x]], listw=lw_unstand, randomisation=TRUE))
Prop_stdN <- lapply(vars, function(x) moran.test(eire_ge1[[x]], listw=lw_std, randomisation=FALSE))
Prop_stdR <- lapply(vars, function(x) moran.test(eire_ge1[[x]], listw=lw_std, randomisation=TRUE))
})
res <- sapply(c("MoranN", "MoranR", "GearyN", "GearyR", "Prop_unstdN", "Prop_unstdR", "Prop_stdN", "Prop_stdR"), function(x) sapply(get(x), "[[", "statistic"))
rownames(res) <- vars
ores <- res[,c(1,2,5:8)]
```
In order to conduct 8 different tests on 16 variables, we use
[`lapply`]{} on the list of variables in the specified order, then
[`sapply`]{} on a list of output objects by name to generate a table in
the same row and column order as the original (we save a copy of six
columns for comparison with bootstrap results below):
```{r echo=FALSE,eval=TRUE}
options("width"=100)
```
```{r echo=TRUE,eval=TRUE}
print(formatC(res, format="f", digits=4), quote=FALSE)
```
```{r echo=FALSE,eval=TRUE}
options("width"=90)
```
The values of the standard deviates agree with those in Table 4 in the
original paper, with the exception of those for the proposed statistic
with standardised weights under normality for all untransformed
variables. We can see what has happened by substituting the weights
constants for the standardised weights with those for unstandardised
weights:
```{r echo=TRUE,eval=TRUE}
wc_unstd <- spweights.constants(lw_unstand)
wrong_N_sqVI <- sqrt((wc_unstd$nn*wc_unstd$S1 - wc_unstd$n*wc_unstd$S2 + 3*wc_unstd$S0*wc_unstd$S0)/((wc_unstd$nn-1)*wc_unstd$S0*wc_unstd$S0)-((-1/(wc_unstd$n-1))^2))
raw_data <- grep("^ln_", vars, invert=TRUE)
I <- sapply(Prop_stdN, function(x) x$estimate[1])[raw_data]
EI <- sapply(Prop_stdN, function(x) x$estimate[2])[raw_data]
res <- (I - EI)/wrong_N_sqVI
names(res) <- vars[raw_data]
print(formatC(res, format="f", digits=4), quote=FALSE)
```
Next, let us look at Table 5 in the original paper. Here we only
tabulate the values of the measures themselves, and, since the
expectation is constant for each measure, the square root of the
variance of the measure under randomisation — extracting values
calculated above:
```{r echo=TRUE,eval=TRUE}
res <- lapply(c("MoranR", "GearyR", "Prop_unstdR", "Prop_stdR"), function(x) sapply(get(x), function(y) c(y$estimate[1], sqrt(y$estimate[3]))))
res <- t(do.call("rbind", res))
colnames(res) <- c("I", "sigma_I", "C", "sigma_C", "unstd_r", "sigma_r", "std_r", "sigma_r")
rownames(res) <- vars
print(formatC(res, format="f", digits=4), quote=FALSE)
```
The values are as follows, and match the original with the exception of
those for the initial version of Moran’s $I$ in the first two columns.
If we write a function implementing equations 3 and 4:
$$I = \frac{\sum_{i=1}^{n}\sum_{j=i+1}^{n}w_{ij}(x_i-\bar{x})(x_j-\bar{x})}{\sum_{i=1}^{n}(x_i - \bar{x})^2}$$
where crucially the inner summation is over $i+1 \ldots n$, not
$1 \ldots
n$, we can reproduce the values of the measure shown in the original
Table 5:
```{r echo=TRUE,eval=TRUE}
oMoranf <- function(x, nb) {
z <- scale(x, scale=FALSE)
n <- length(z)
glist <- lapply(1:n, function(i) {ii <- nb[[i]]; ifelse(ii > i, 1, 0)})
lw <- nb2listw(nb, glist=glist, style="B")
wz <- lag(lw, z)
I <- (sum(z*wz)/sum(z*z))
I
}
res <- sapply(vars, function(x) oMoranf(eire_ge1[[x]], nb=lw_unstand$neighbours))
print(formatC(res, format="f", digits=4), quote=FALSE)
```
The variance term given in equation 7 in the original paper is for the
case of normality, not randomisation; the reference on p. 28 to equation
38 on p. 26 does not permit the reproduction of the values in the second
column of Table 5. The variance equation given as equation 1.35 by
@cliff+ord:73 [p. 9] does not do so either, so for the time being it is
not possible to say how the tabulated values were computed. Note that
since the standard deviances are reproduced correctly, and can be
reproduced from the second column values using the measure and its
expectance, it is just a matter of establishing which formula was used,
but this has so far not proved possible.
## Simulating measures of spatial autocorrelation
@cliff+ord:69 do not conduct simulation experiments, although their
sequels do, notably @cliff+ord:73, among many others. Simulation studies
are necessarily more demanding computationally, especially if spatially
autocorrelated variables are to be created, as in @cliff+ord:73 [pp.
146–153]. In the same book, they also report the use of permutation
tests, also known as Monte Carlo or Hope hypothesis testing procedures
[@cliff+ord:73 pp. 50–52]. These procedures provided a way to examine
the distribution of the statistic of interest by exchanging at random
the observed values between observations, and then comparing the
simulated distribution under the null hypothesis of no spatial
patterning with the observed value of the statistic in question.
```{r echo=TRUE,eval=TRUE}
MoranI.boot <- function(var, i, ...) {
var <- var[i]
return(moran(x=var, ...)$I)
}
Nsim <- function(d, mle) {
n <- length(d)
rnorm(n, mle$mean, mle$sd)
}
f_bperm <- function(x, nsim, listw) {
boot(x, statistic=MoranI.boot, R=nsim, sim="permutation", listw=listw,
n=length(x), S0=Szero(listw))
}
f_bpara <- function(x, nsim, listw) {
boot(x, statistic=MoranI.boot, R=nsim, sim="parametric", ran.gen=Nsim,
mle=list(mean=mean(x), sd=sd(x)), listw=listw, n=length(x),
S0=Szero(listw))
}
nsim <- 4999
set.seed(1234)
```
First let us define a function [`MoranI.boot`]{} just to return the
value of Moran’s $I$ for variable [`var`]{} and permutation index
[`i`]{}, and a function [`Nsim`]{} to generate random samples from the
variable of interest assuming Normality. To make it easier to process
the variables in turn, we encapsulate calls to [`boot`]{} in wrapper
functions [`f_bperm`]{} and [`f_bpara`]{}. Running 4999 simulations for
each of 16 for three different weights specifications and both
parametric and permutation bootstrap takes quite a lot of time.
```{r echo=TRUE,eval=FALSE}
system.time({
MoranNb <- lapply(vars, function(x) f_bpara(x=eire_ge1[[x]], nsim=nsim, listw=nb_B))
MoranRb <- lapply(vars, function(x) f_bperm(x=eire_ge1[[x]], nsim=nsim, listw=nb_B))
Prop_unstdNb <- lapply(vars, function(x) f_bpara(x=eire_ge1[[x]], nsim=nsim, listw=lw_unstand))
Prop_unstdRb <- lapply(vars, function(x) f_bperm(x=eire_ge1[[x]], nsim=nsim, listw=lw_unstand))
Prop_stdNb <- lapply(vars, function(x) f_bpara(x=eire_ge1[[x]], nsim=nsim, listw=lw_std))
Prop_stdRb <- lapply(vars, function(x) f_bperm(x=eire_ge1[[x]], nsim=nsim, listw=lw_std))
})
```
```{r echo=FALSE,eval=FALSE}
zzz <- system.time({
MoranNb <- lapply(vars, function(x) f_bpara(x=eire_ge1[[x]], nsim=nsim, listw=nb_B))
MoranRb <- lapply(vars, function(x) f_bperm(x=eire_ge1[[x]], nsim=nsim, listw=nb_B))
Prop_unstdNb <- lapply(vars, function(x) f_bpara(x=eire_ge1[[x]], nsim=nsim, listw=lw_unstand))
Prop_unstdRb <- lapply(vars, function(x) f_bperm(x=eire_ge1[[x]], nsim=nsim, listw=lw_unstand))
Prop_stdNb <- lapply(vars, function(x) f_bpara(x=eire_ge1[[x]], nsim=nsim, listw=lw_std))
Prop_stdRb <- lapply(vars, function(x) f_bperm(x=eire_ge1[[x]], nsim=nsim, listw=lw_std))
})
res <- lapply(c("MoranNb", "MoranRb", "Prop_unstdNb", "Prop_unstdRb", "Prop_stdNb", "Prop_stdRb"), function(x) sapply(get(x), function(y) (y$t0 - mean(y$t))/sd(y$t)))
res <- t(do.call("rbind", res))
colnames(res) <- c("MoranNb", "MoranRb", "Prop_unstdNb", "Prop_unstdRb", "Prop_stdNb", "Prop_stdRb")
rownames(res) <- vars
save(zzz, res, file="backstore/boot_res.RData")
```
```{r echo=FALSE,eval=FALSE}
bsfn <- system.file("etc/backstore/boot_res.RData", package="spdep")
load(bsfn)
zzz
```
```{r echo=TRUE,eval=FALSE}
res <- lapply(c("MoranNb", "MoranRb", "Prop_unstdNb", "Prop_unstdRb", "Prop_stdNb", "Prop_stdRb"), function(x) sapply(get(x), function(y) (y$t0 - mean(y$t))/sd(y$t)))
res <- t(do.call("rbind", res))
colnames(res) <- c("MoranNb", "MoranRb", "Prop_unstdNb", "Prop_unstdRb", "Prop_stdNb", "Prop_stdRb")
rownames(res) <- vars
```
We collate the results to compare with the analytical standard deviates
under Normality and randomisation, and see that in fact the differences
are not at all large, as expressed by the median absolute difference
between the tables. We can also see that inferences based on a one-sided
$\alpha=0.05$ cut-off are the same for the analytical and bootstrap
approaches. This indicates that we can, in general, rely on the
analytical standard deviates, and that bootstrap methods will not help
if assumptions underlying the measures are not met.
```{r echo=TRUE,eval=TRUE}
print(formatC(res, format="f", digits=4), quote=FALSE)
oores <- ores - res
apply(oores, 2, mad)
alpha_0.05 <- qnorm(0.05, lower.tail=FALSE)
all((res >= alpha_0.05) == (ores >= alpha_0.05))
```
These assumptions affect the shape of the distribution of the measure in
its tails; one possibility is to use a Saddlepoint approximation to find
an equivalent to the analytical or bootstrap-based standard deviate for
inference [@tiefelsdorf:02]. The Saddlepoint approximation requires the
eigenvalues of the weights matrix and iterative root-finding for global
Moran’s $I$, while for local Moran’s $I_i$, analytical forms are known.
Even with this computational burden, the Saddlepoint approximation for
global Moran’s $I$ runs quite quickly. First we need to fit null linear
models (only including an intercept) to the variables, then apply
[`lm.morantest.sad`]{} to the fitted model objects:
```{r echo=TRUE,eval=TRUE}
lm_objs <- lapply(vars, function(x) lm(formula(paste(x, "~1")), data=eire_ge1))
system.time({
MoranSad <- lapply(lm_objs, function(x) lm.morantest.sad(x, listw=nb_B))
Prop_unstdSad <- lapply(lm_objs, function(x) lm.morantest.sad(x, listw=lw_unstand))
Prop_stdSad <- lapply(lm_objs, function(x) lm.morantest.sad(x, listw=lw_std))
})
res <- sapply(c("MoranSad", "Prop_unstdSad", "Prop_stdSad"), function(x) sapply(get(x), "[[", "statistic"))
rownames(res) <- vars
```
Although the analytical standard deviates (under Normality) are larger
than those reached using the Saddlepoint approximation when measured by
median absolute deviation, the differences do not lead to different
inferences at this chosen cut-off. This reflects the fact that the shape
of the distribution is very sensitive to small $n$, but for moderate $n$
and global Moran’s $I$, the effects are seen only further out in the
tails. The consequences for local Moran’s $I_i$ are much stronger,
because the clique of neighbours of each observation is typically very
small. It is perhaps of interest that the differences are much smaller
for the case of general weights than for unstandardised binary weights.
```{r echo=TRUE,eval=TRUE}
print(formatC(res, format="f", digits=4), quote=FALSE)
oores <- res - ores[,c(1,3,5)]
apply(oores, 2, mad)
all((res >= alpha_0.05) == (ores[,c(1,3,5)] >= alpha_0.05))
```
In addition we could choose to use the exact distribution of Moran’s
$I$, as described by @tiefelsdorf:00; its implementation is covered in
@bivandetal:09. The global case also needs the eigenvalues of the
weights matrix, and the solution of a numerical integration function,
but for these cases, the timings are quite acceptable.
```{r echo=TRUE,eval=TRUE}
system.time({
MoranEx <- lapply(lm_objs, function(x) lm.morantest.exact(x, listw=nb_B))
Prop_unstdEx <- lapply(lm_objs, function(x) lm.morantest.exact(x, listw=lw_unstand))
Prop_stdEx <- lapply(lm_objs, function(x) lm.morantest.exact(x, listw=lw_std))
})
res <- sapply(c("MoranEx", "Prop_unstdEx", "Prop_stdEx"), function(x) sapply(get(x), "[[", "statistic"))
rownames(res) <- vars
```
The output is comparable with that of the Saddlepoint approximation, and
the inferences drawn here are the same for the chosen cut-off as for the
analytical standard deviates calculated under Normality.
```{r echo=TRUE,eval=TRUE}
print(formatC(res, format="f", digits=4), quote=FALSE)
oores <- res - ores[,c(1,3,5)]
apply(oores, 2, mad)
all((res >= alpha_0.05) == (ores[,c(1,3,5)] >= alpha_0.05))
```
@lietal:07 take up the challenge in @cliff+ord:69 [p. 31], to try to
give the statistic a bounded fixed range. Their APLE measure is intended
to approximate the spatial dependence parameter of a simultaneous
autoregressive model better than Moran’s $I$, and re-scales the measure
by a function of the eigenvalues of the spatial weights matrix. APLE
requires the use of row standardised weights.
```{r echo=TRUE,eval=TRUE}
vars_scaled <- lapply(vars, function(x) scale(eire_ge1[[x]], scale=FALSE))
nb_W <- nb2listw(lw_unstand$neighbours, style="W")
pre <- spdep:::preAple(0, listw=nb_W)
MoranAPLE <- sapply(vars_scaled, function(x) spdep:::inAple(x, pre))
pre <- spdep:::preAple(0, listw=lw_std, override_similarity_check=TRUE)
Prop_stdAPLE <- sapply(vars_scaled, function(x) spdep:::inAple(x, pre))
res <- cbind(MoranAPLE, Prop_stdAPLE)
colnames(res) <- c("APLE W", "APLE Gstd")
rownames(res) <- vars
```
In order to save time, we use the two internal functions
[`spdep:::preAple`]{} and [`spdep:::inAple`]{}, since for each
definition of spatial weights, the same eigenvalue calculations need to
be made. The notation using the [`:::`]{} operator says that the
function with named after the operator is to be found in the namespace
of the package named before the operator. The APLE values repeat the
pattern that we have already seen — for some variables, the measured
autocorrelation is very similar irrespective of spatial weights
definition, while for others, the change in the definition from binary
to general does make a difference.
```{r echo=TRUE,eval=TRUE}
print(formatC(res, format="f", digits=4), quote=FALSE)
```
```{r results='asis',eval=TRUE,echo=FALSE, fig.cap="Three contrasted spatial weights definitions"}
pal <- grey.colors(9, 1, 0.5, 2.2)
oopar <- par(mfrow=c(1,3), mar=c(1,1,3,1)+0.1)
z <- t(listw2mat(nb_B))
brks <- c(0,0.1,1)
image(1:25, 1:25, z[,ncol(z):1], breaks=brks, col=pal[c(1,9)],
main="Binary", axes=FALSE)
box()
z <- t(listw2mat(lw_unstand))
brks <- c(0,quantile(c(z)[c(z) > 0], seq(0,1,1/8)))
image(1:25, 1:25, z[,ncol(z):1], breaks=brks, col=pal, main="General", axes=FALSE)
box()
z <- t(listw2mat(lw_std))
brks <- c(0,quantile(c(z)[c(z) > 0], seq(0,1,1/8)))
image(1:25, 1:25, z[,ncol(z):1], breaks=brks, col=pal,
main="Std. general", axes=FALSE)
box()
par(oopar)
```
\caption{Three contrasted spatial weights definitions.}
\label{plot_wts}
```{r results='asis',eval=TRUE,echo=FALSE}
eire_ge1$nb_B <- sapply(nb_B$weights, sum)
eire_ge1$lw_unstand <- sapply(lw_unstand$weights, sum)
library(lattice)
trellis.par.set(sp.theme())
p1 <- spplot(eire_ge1, c("nb_B"), main="Binary")
p2 <- spplot(eire_ge1, c("lw_unstand"), main="General")
print(p1, split=c(1,1,2,1), more=TRUE)
print(p2, split=c(2,1,2,1), more=FALSE)
```
\caption{Sums of weights by county for two contrasted spatial weights definitions --- for row standardisation, all counties sum to unity.}
\label{plot_map}
## Odds and ends $\ldots$
The differences found in the case of a few variables in inference using
the original binary weights, and the general weights proposed by
@cliff+ord:69 are necessarily related to the the weights thenselves.
Figures \[plot\_wts\] and \[plot\_map\] show the values of the weights
in sparse matrix form, and the sums of weights by county where these
sums are not identical by design. In the case of binary weights, the
matrix entries are equal, but the sums up-weight counties with many
neighbours.
General weights up-weight counties that are close to each other, have
more neighbours, and share larger boundary proportions (an asymmetric
relationship). There is a further impact of using boundary proportions,
in that the boundary between the county and the exterior is subtracted,
thus boosting the weights between edge counties and their neighbours,
even if there are few of them. Standardised general weights up-weight
further up-weight counties with few neighbours, chiefly those on the
edges of the study area.
With a small data set, here with $n=25$, it is very possible that edge
and other configuration effects are relatively strong, and may impact
inference in different ways. The issue of egde effects has not really
been satisfactorily resolved, and should be kept in mind in analyses of
data sets of this size and shape.
## References
[^1]: cropped scans of tables are available from
<http://spatial.nhh.no/R/etc/CO69-PNGs.zip>.
|