1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380
|
<!-- README.md is generated from README.Rmd. Please edit README.Rmd -->
[](https://travis-ci.org/swihart/stable) [](https://cran.r-project.org/package=stable) 
`stable` R package
==================
This package is intended to be the developmental version to the CRAN version of [Jim Lindsey's stable](https://www.commanster.eu/rcode.html). The .zip files listed on his homepage have been listed as version 1.0 since 2005. For the subsequent maintenance on this github and CRAN, we will start at 1.1.
To compare this version with the static v1.0 files on [Jim Lindsey's Homepage](https://www.commanster.eu/rcode.html), it may be useful to use [the compare page for this repo's two branches](https://github.com/swihart/stable/compare/jim-lindsey-homepage-version-1.0...master?diff=split&name=master).
comparisons with `stabledist` R package
=======================================
In brief, the parameters have different names and are transformations for each other. First, the names:
| stabledist | stable |
|------------|--------|
| alpha | tail |
| beta | skew |
| gamma | disp |
| delta | loc |
If you read the Lambert and Lindsey (1999 JRSS-C) PDF in this repo, be aware that location is given the greek letter gamma and scale is given the greek letter delta. The Nolan PDF does the opposite and is used for `stabledist`.
[Swihart 2022 update, see references in `?dstable`:] In this README we detail how to make equivalent calls
to those of 'stabledist' (i.e., Nolan's 0-parameterization and 1-parameterization
as detailed in Nolan (2020)).
See github for Lambert and Lindsey 1999 JRSS-C journal article,
which details the parameterization of the Buck (1995) stable distribution which allowed
a Fourier inversion to arrive at a form similar to but not exactly the $g_d$
function as detailed in Nolan (2020),
Abdul-Hamid and Nolan (1998) and Nolan (1997).
The Nolan (2020) reference is a textbook that provides
an accessible and comprehensive summary of stable distributions in the 25 years or so
since the core of this R package was made and put on CRAN.
The Buck (1995) parameterization most closely resembles the Zolotarev B parameterization
outlined in Definition 3.6 on page 93 of Nolan (2020) -- except that Buck (1995) did
not allow the scale parameter to multiply with the location parameter.
This explains why the `Zolotarev B` entry in Table 3.1 on page 97 of Nolan (2020) has
the location parameter being multiplied by the scale parameter whereas in converting the Lindsey and Lambert (1999)
to Nolan 1-parameterization the location parameter stays the same.
To be clear, \code{stable::dstable} and \code{stable::pstable} are evaluated
by numerically integrating the inverse Fourier transform. The code works
reasonably for small and moderate values of x, but will have numerical issues
in some cases large x(such as values from \code{stable::pstable} being greater than
1 or or not being monotonic). The arguments \code{npt}, \code{up},
\code{integration}, and \code{eps} can be adjusted
to improve accuracy at the cost of speed, but will still have limitations.
Functions that avoid these problems are available in other packages
(such as \code{stabledist} and \code{stable}) that use an alternative method
(as detailed in Nolan 1997)
distinct from directly numerically integrating the Fourier inverse transform.
See last example in this README.
For some values for some distributions things match up nicely, as we see with Normal and Cauchy:
normal distribution
-------------------
``` r
q <- 3
stable::pstable(q, tail =2, skew=0, disp =1, loc =0)
#> [1] 0.9830526
stabledist::pstable(q, alpha=2, beta=0, gamma=1, delta=0)
#> [1] 0.9830526
```
cauchy distribution
-------------------
``` r
q <- 3
stable::pstable(q, tail =1, skew=0, disp =1, loc =0)
#> [1] 0.8975836
stabledist::pstable(q, alpha=1, beta=0, gamma=1, delta=0)
#> [1] 0.8975836
```
However, to make `stable` equivalent to `stabledist` in general, some transformations are needed. Please see the following examples. Between `stabledist` and `stable`, the `alpha` is equivalent to `tail` and the `delta` is equivalent to `loc` with no transformation. For the `beta` (`skew`) and `gamma` (`disp`) parameters, a transformation is needed to get equivalent calls. Note differences still may exist to numerical accuracy.
levy cdf
--------
``` r
q <- 0.9
# nolan pm=1 parameters:
a <- 0.5
b <- 1
c <- .25
d <- 0.8
# lindsey-(3) page 415 conversion:
# tail/alpha and location stay the same
a3 <- a
d3 <- d
# the others require calcs:
DEL2 <- cos(pi/2 * a)^2 + (-b)^2*sin(pi/2 * a)^2
DEL <- sqrt(DEL2) * sign(1-a)
eta_a <- min(a, 2-a)
# the lindsey-(3) beta:
b3 <- 2/(pi*eta_a)*acos( cos(pi/2 * a) / DEL )
# the lindsey-(3) scale:
c3 <- ( (DEL*c^a) / cos(pi/2 * a) )^(1/a)
stable::pstable(q, tail =a, skew=b3, disp =c3, loc =d)
#> [1] 0.1154242
stabledist::pstable(q, alpha=a, beta=b , gamma=c , delta=d, pm=1)
#> [1] 0.1138462
rmutil::plevy(q, m=d, s=c)
#> [1] 0.1138463
# more accuracy!!!!?!
stable::pstable(q, tail =a, skew=b3, disp =c3, loc =d, eps = 0.13*1e-7)
#> [1] 0.1138786
```
levy pdf
--------
``` r
q <- 0.9
# nolan pm=1 parameters:
a <- 0.5
b <- 1
c <- .25
d <- 0.8
# lindsey-(3) page 415 conversion:
# tail/alpha and location stay the same
a3 <- a
d3 <- d
# the others require calcs:
DEL2 <- cos(pi/2 * a)^2 + (-b)^2*sin(pi/2 * a)^2
DEL <- sqrt(DEL2) * sign(1-a)
eta_a <- min(a, 2-a)
# the lindsey-(3) beta:
b3 <- 2/(pi*eta_a)*acos( cos(pi/2 * a) / DEL )
# the lindsey-(3) scale:
c3 <- ( (DEL*c^a) / cos(pi/2 * a) )^(1/a)
stable::dstable(q, tail =a, skew=b3, disp =c3, loc =d)
#> [1] 1.806389
stabledist::dstable(q, alpha=a, beta=b , gamma=c , delta=d, pm=1)
#> Warning in uniroot(function(th) log(g(th)), lower = l.th, upper = u.th, : -
#> Inf replaced by maximally negative value
#> Warning in uniroot(function(th) log(g(th)), lower = l.th, upper = u.th, : -
#> Inf replaced by maximally negative value
#> Warning in .integrate2(g1, lower = a, upper = b, subdivisions =
#> subdivisions, : roundoff error is detected in the extrapolation table
#> [1] 1.807224
rmutil::dlevy(q, m=d, s=c)
#> [1] 1.807224
```
levy quantile
-------------
``` r
p <- .3
# nolan pm=1 parameters:
a <- 0.5
b <- 1
c <- .25
d <- 0.8
# lindsey-(3) page 415 conversion:
# tail/alpha and location stay the same
a3 <- a
d3 <- d
# the others require calcs:
DEL2 <- cos(pi/2 * a)^2 + (-b)^2*sin(pi/2 * a)^2
DEL <- sqrt(DEL2) * sign(1-a)
eta_a <- min(a, 2-a)
# the lindsey-(3) beta:
b3 <- 2/(pi*eta_a)*acos( cos(pi/2 * a) / DEL )
# the lindsey-(3) scale:
c3 <- ( (DEL*c^a) / cos(pi/2 * a) )^(1/a)
stable::qstable(p, tail =a, skew=b3, disp =c3, loc =d)
#> [1] 1.031301
stabledist::qstable(p, alpha=a, beta=b , gamma=c , delta=d, pm=1)
#> [1] 1.032735
rmutil::qlevy(p, m=d, s=c)
#> [1] 1.032733
```
play with alpha not 2 and not 1
-------------------------------
``` r
q <- -1.97
# nolan pm=1 parameters:
a <- 0.8
b <- 0
c <- 1
d <- 0
# lindsey-(3) page 415 conversion:
# tail/alpha and location stay the same
a3 <- a
d3 <- d
# the others require calcs:
DEL2 <- cos(pi/2 * a)^2 + (-b)^2*sin(pi/2 * a)^2
DEL <- sqrt(DEL2) * sign(1-a)
eta_a <- min(a, 2-a)
# the lindsey-(3) beta:
b3 <- 2/(pi*eta_a)*acos( cos(pi/2 * a) / DEL )
# the lindsey-(3) scale:
c3 <- ( (DEL*c^a) / cos(pi/2 * a) )^(1/a)
stable::pstable(q, tail =a, skew=b3, disp =c3, loc =d)
#> [1] 0.1722953
stabledist::pstable(q, alpha=a, beta=b , gamma=c , delta=d)
#> [1] 0.1722945
```
play with skew
--------------
``` r
q <- -1
# nolan pm=1 parameters:
a <- 1.3
b <- 0.4
c <- 2
d <- 0.75
# lindsey-(3) page 415 conversion:
# tail/alpha and location stay the same
a3 <- a
d3 <- d
# the others require calcs:
DEL2 <- cos(pi/2 * a)^2 + (-b)^2*sin(pi/2 * a)^2
DEL <- sqrt(DEL2) * sign(1-a)
eta_a <- min(a, 2-a)
# the lindsey-(3) beta:
b3 <- -sign(b)*2/(pi*eta_a)*acos( cos(pi/2 * a) / DEL )
# the lindsey-(3) scale:
c3 <- ( (DEL*c^a) / cos(pi/2 * a) )^(1/a)
stable::pstable(q, tail =a, skew=b3, disp =c3, loc =d)
#> [1] 0.4349168
stabledist::pstable(q, alpha=a, beta=b , gamma=c , delta=d, pm=1)
#> [1] 0.4348957
stable::dstable(q, tail =a, skew=b3, disp =c3, loc =d)
#> [1] 0.1454112
stabledist::dstable(q, alpha=a, beta=b , gamma=c , delta=d, pm=1)
#> [1] 0.1454111
```
The example above, but using `sd2s` and `s2sd`
----------------------------------------------
``` r
q <- -1
# nolan pm=1 parameters:
a <- 1.3
b <- -0.4
c <- 2
d <- 0.75
# sd2s takes nolan (stabledist) parameters and returns lindsey (stable)
s <- stable::sd2s(alpha=a, beta=b, gamma=c, delta=d)
stable::pstable(q, tail = s$tail, skew=s$skew, disp = s$disp, loc = s$loc)
#> [1] 0.196531
stabledist::pstable(q, alpha=a, beta=b , gamma=c , delta=d, pm=1)
#> [1] 0.1965513
# s2sd takes lindsey (stable) parameters and returns nolan (stabledist)
sd <- stable::s2sd(tail = s$tail, skew=s$skew, disp = s$disp, loc = s$loc)
stabledist::pstable(q, alpha=sd$alpha, beta=sd$beta , gamma=sd$gamma , delta=sd$delta, pm=1)
#> [1] 0.1965513
```
pm1\_to\_pm0
------------
``` r
q <- -1
# nolan pm=1 parameters:
a1 <- 1.3
b1 <- -0.4
c1 <- 2
d1 <- 0.75
# for a1 != 1
d0 <- d1 + b1*c1*tan(pi*a1/2)
# Calculate d0 by hand or use pm1_to_pm0():
# Convert to nolan pm=0 parameters:
pm0 <- stable::pm1_to_pm0(a1,b1,c1,d1)
a0 <- pm0$a0
b0 <- pm0$b0
c0 <- pm0$c0
d0 <- pm0$d0
# check:
stabledist::pstable(q, alpha=a1, beta=b1 , gamma=c1 , delta=d1, pm=1)
#> [1] 0.1965513
# only change delta=d0 for pm=0
stabledist::pstable(q, alpha=a1, beta=b1 , gamma=c1 , delta=d0, pm=0)
#> [1] 0.1965513
stabledist::pstable(q, alpha=a0, beta=b0 , gamma=c0 , delta=d0, pm=0)
#> [1] 0.1965513
stabledist::dstable(q, alpha=a1, beta=b1 , gamma=c1 , delta=d1, pm=1)
#> [1] 0.0572133
# only change delta=d0 for pm=0
stabledist::dstable(q, alpha=a1, beta=b1 , gamma=c1 , delta=d0, pm=0)
#> [1] 0.0572133
stabledist::dstable(q, alpha=a0, beta=b0 , gamma=c0 , delta=d0, pm=0)
#> [1] 0.0572133
```
mode of a stable distribution
-----------------------------
``` r
q <- -1
# nolan pm=1 parameters:
# a1 <- 1.3
# b1 <- 0.4
# c1 <- 2
# d1 <- 0.75
a1 <- 1.3
b1 <- .5
c1 <- 1
d1 <- 0
# for a1 != 1
d0 <- d1 + b1*c1*tan(pi*a1/2)
s <- stable::sd2s(alpha=a1, beta=b1, gamma=c1, delta=d1)
stable::stable.mode(tail = s$tail, skew=s$skew, disp = s$disp, loc = s$loc)$ytilde
#> [1] -1.13224
c1*stabledist::stableMode(alpha=a1, beta=b1)+d0
#> [1] -1.133257
xran <- seq(-2.5,2.6,0.001)
ysd <- stabledist::dstable(xran, alpha=a1, beta=b1, gamma=c1, delta=d1, pm=1)
#plot(xran, ysd)
xran[ysd == max(ysd)]
#> [1] -1.133
ys <- stable::dstable(xran, tail = s$tail, skew=s$skew, disp = s$disp, loc = s$loc)
#points(xran, ys, col="blue")
xran[ys == max(ys)]
#> [1] -1.133
```
possible numerical issues for large x
-----------------------------
``` r
param_conv <- stable::s2sd(1.5, 0.5, 1/sqrt(2), 0)
param_conv
head(stable::dstable(q, tail =1.5, skew=0.5, disp =1/sqrt(2), loc = 0))
head(stabledist::dstable(q, alpha=param_conv$alpha, beta=param_conv$beta , gamma=param_conv$gamma , delta=param_conv$delta, pm=1))
plot(q,stable::dstable(q, tail =1.5, skew=0.5, disp =1/sqrt(2), loc = 0), type="s")
plot(q,stabledist::dstable(q, alpha=param_conv$alpha, beta=param_conv$beta , gamma=param_conv$gamma , delta=param_conv$delta, pm=1), type="s")
param_conv <- stable::s2sd(1.5, 0.5, 1/sqrt(2), 0)
param_conv
plot(q,stable::pstable(q, tail =1.5, skew=0.5, disp =1/sqrt(2), loc = 0), type="s")
plot(q,stabledist::pstable(q, alpha=param_conv$alpha, beta=param_conv$beta , gamma=param_conv$gamma , delta=param_conv$delta, pm=1), type="s")
```
|