File: stablereg.Rd

package info (click to toggle)
r-cran-stable 1.1.6-1
  • links: PTS, VCS
  • area: main
  • in suites: bookworm, forky, sid, trixie
  • size: 284 kB
  • sloc: ansic: 164; makefile: 2
file content (255 lines) | stat: -rw-r--r-- 10,276 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
% Generated by roxygen2: do not edit by hand
% Please edit documentation in R/stable.r
\name{stablereg}
\alias{stablereg}
\alias{fitted.stable}
\alias{df.residual.stable}
\alias{deviance.stable}
\alias{aic.stable}
\title{Stable Generalized Regression Models}
\usage{
stablereg(
  y = NULL,
  loc = 0,
  disp = 1,
  skew = 0,
  tail = 1.5,
  oloc = TRUE,
  odisp = TRUE,
  oskew = TRUE,
  otail = TRUE,
  noopt = FALSE,
  iloc = NULL,
  idisp = NULL,
  iskew = NULL,
  itail = NULL,
  loc_h = NULL,
  disp_h = NULL,
  skew_h = NULL,
  tail_h = NULL,
  weights = 1,
  exact = FALSE,
  delta = 1,
  envir = parent.frame(),
  integration = "Romberg",
  eps = 1e-06,
  up = 10,
  npoint = 501,
  hessian = TRUE,
  llik.output = FALSE,
  print.level = 0,
  ndigit = 10,
  steptol = 1e-05,
  gradtol = 1e-05,
  fscale = 1,
  typsize = abs(p0),
  stepmax = sqrt(p0 \%*\% p0),
  iterlim = 100
)
}
\arguments{
\item{y}{The response vector or a \code{repeated} data object. If the
\code{repeated} data object contains more than one response variable, give
that object in \code{envir} and give the name of the response variable to be
used here.

For censored data, two columns with the second being the censoring indicator
(1: uncensored, 0: right censored, -1: left censored.)}

\item{loc, loc_h, oloc, iloc}{Describe the regression model fitted for the
location parameter of the stable distribution, perhaps after transformation
by the link function \code{loc_g} (set to the identity by default. The
inverse link function is denoted by \code{loc_h}. Note that these functions
cannot contain unknown parameters).

Two specifications are possible:

(1) \code{loc} is a linear or nonlinear language expression beginning with ~
or an R function, describing the regression function for the location
parameter (after transformation by \code{loc_g}, the link function).

\code{iloc} is a vector of initial conditions for the parameters in the
regression for this parameter.

\code{oloc} is a boolean indicating if an optimization of the likelihood has
to be carried out on these parameters. If \code{oloc} is set to TRUE, a
default zero value is considered for the starting values \code{iloc}. But if
no optimization is desired on the location parameters, i.e. when the
likelihood has to be evaluated or optimized at a fixed location, then
\code{iloc} has to be explicitely specified.

(2) \code{loc} is a numeric expression (i.e. a scalar or a vector of the
same size as the data vector \code{y}, or \code{y[,1]} when censoring is
considered).

If \code{oloc} is set to TRUE, i.e. when an optimization of the likelihood
has to be carried out on the location parameter, then the location parameter
(after transformation by the link function loc_g) is set to an unknown
parameter with initial value equal to \code{iloc[1]} or \code{loc[1]} when
\code{iloc} is not specified.

But when \code{oloc} is set to FALSE, i.e. when the likelihood has to be
evaluated or optimized at a fixed location, then the transformed location is
assumed to be equal to \code{loc} when it is of the same length as the data
vector \code{y} (or \code{y[,1]} when censoring is considered), and to
\code{loc[1]} otherwise.

Specification (1) is especially useful in ANOVA-like situations where the
location is assumed to change with the levels of some factor variable.}

\item{disp, disp_h, odisp, idisp}{describe the regression model for the
dispersion parameter of the fitted stable distribution, after transformation
by the link function \code{disp_g} (set to the \code{log} function by
default). The inverse link function is denoted by \code{disp_h}. Again these
functions cannot contain unknown parameters. The same rules as above apply
when specifying the generalized regression model for the dispersion
parameter.}

\item{skew, skew_h, oskew, iskew}{describe the regression model for the
skewness parameter of the fitted stable distribution, after transformation
by the link function \code{skew_g} (set to \code{log{(1 + [.])/(1 - [.])}}
by default). The inverse link function is denoted by \code{skew_h}. Again
these functions cannot contain unknown parameters. The same rules as above
apply when specifying the generalized regression model for the skewness
parameter.}

\item{tail, tail_h, otail, itail}{describe the regression model considered
for the tail parameter of the fitted stable distribution, after
transformation by the link function \code{tail_g} (set to \code{log{([.] -
1)/(2 - [.])}} by default. The inverse link function is denoted by
\code{tail_h}. Again these functions cannot contain unknown parameters). The
same rules as above apply when specifying the generalized regression model
for the tail parameter.}

\item{noopt}{When set to TRUE, it forces \code{oloc}, \code{odisp},
\code{oskew} and \code{otail} to FALSE, whatever the user choice for these
last three arguments. It is especially useful when looking for appropriate
initial values for the regression model parameters, before undertaking the
optimization of the likelihood.}

\item{weights}{Weight vector.}

\item{exact}{If TRUE, fits the exact likelihood function for continuous data
by integration over intervals of observation, i.e. interval censoring.}

\item{delta}{Scalar or vector giving the unit of measurement for each
response value, set to unity by default. For example, if a response is
measured to two decimals, \code{delta=0.01}. If the response is transformed,
this must be multiplied by the Jacobian.  For example, with a log
transformation, \code{delta=1/y}. (The \code{delta} values for the censored
response are ignored.) The transformation cannot contain unknown parameters.}

\item{envir}{Environment in which model formulae are to be interpreted or a
data object of class, \code{repeated}, \code{tccov}, or \code{tvcov}; the
name of the response variable should be given in \code{y}. If \code{y} has
class \code{repeated}, it is used as the environment.}

\item{integration, eps, up, npoint}{\code{integration} indicates which
algorithm must be used to evaluate the stable density when the likelihood is
computed with \code{exact} set to FALSE. See the man page on
\code{stable} for extra information.}

\item{hessian}{Arguments controlling the optimization procedure \code{\link{nlm}}.}

\item{llik.output}{is TRUE when the likelihood has to be displayed at each
iteration of the optimization.}

\item{print.level}{Arguments controlling the optimization procedure \code{\link{nlm}}.}

\item{ndigit}{Arguments controlling the optimization procedure \code{\link{nlm}}.}

\item{steptol}{Arguments controlling the optimization procedure \code{\link{nlm}}.}

\item{gradtol}{Arguments controlling the optimization procedure \code{\link{nlm}}.}

\item{fscale}{Arguments controlling the optimization procedure \code{\link{nlm}}.}

\item{typsize}{Arguments controlling the optimization procedure \code{\link{nlm}}.}

\item{stepmax}{Arguments controlling the optimization procedure \code{\link{nlm}}.}

\item{iterlim}{Arguments controlling the optimization procedure \code{\link{nlm}}.}
}
\value{
A list of class \code{stable} is returned. The printed output
includes the -log-likelihood, the corresponding AIC, the maximum likelihood
estimates, standard errors, and correlations. It also include all the
relevant information calculated, including error codes.
}
\description{
\code{stablereg} fits user specified generalized linear and nonlinear
regression models based on the stable distribution to (uncensored, right
and/or left censored) data. This allows the location, the dispersion, the
skewness and the tails of the fitted stable distribution to vary with
explanatory variables.
}
\section{Warning}{
 Because of the numerical integrations involved,
convergence can be very sensitive to the initial parameter values supplied
and to the settings of the arguments controlling \code{\link{nlm}}. If nlm
feeds extreme parameter values in the tails of the distribution to the
likelihood function, the integration may hang for a long time.
}

\examples{

## Share return over a 50 day period (see reference above)
# shares
y <- c(296,296,300,302,300,304,303,299,293,294,294,293,295,287,288,297,
305,307,307,304,303,304,304,309,309,309,307,306,304,300,296,301,298,
295,295,293,292,297,294,293,306,303,301,303,308,305,302,301,297,299)

# returns
ret <- (y[2:50]-y[1:49])/y[1:49]
# hist(ret, breaks=seq(-0.035,0.045,0.01))

day <- seq(0,0.48,by=0.01) # time measured in days/100
x <- seq(1,length(ret))-1

# Classic stationary normal model tail=2
print(z1 <- stablereg(y = ret, delta = 1/y[1:49],
	loc = ~1, disp= ~1, skew = ~1, tail = tail_g(1.9999999),
	iloc = 0, idisp = -3, iskew = 0, oskew = FALSE, otail = FALSE))

# Normal model (tail=2) with dispersion=disp_h(b0+b1*day)
print(z2 <- stablereg(y = ret, delta = 1/y[1:49], loc = ~day,
	disp = ~1, skew = ~1, tail = tail_g(1.999999), iloc = c(0.003,0),
	idisp = -4.5, iskew = 0, oskew = FALSE, otail = FALSE))

# Stable model with loc(ation)=loc_h(b0+b1*day)
print(z3 <- stablereg(y = ret, delta = 1/y[1:49],
	loc = ~day, disp = ~1, skew = ~1, tail = ~1,
	iloc = c(0.001,-0.004), idisp = -4.8, iskew = 0, itail = 0.6))

# Stable model with disp(ersion)=disp_h(b0+b1*day)
print(z4 <- stablereg(y = ret, delta = 1/y[1:49],
	loc = ~1, disp = ~day, skew = ~1, tail = ~1,
	iloc = 0.003, idisp = c(-4.8,0), iskew = -0.03, itail = 1.6))

# Stable model with skew(ness)=skew_h(b0+b1*day)
# Evaluation at fixed parameter values (because noopt is set to TRUE)
print(z5 <- stablereg(y = ret, delta = 1/y[1:49],
	loc = ~1, disp = ~1, skew = ~day, tail = ~1,
	iloc = 5.557e-04, idisp = -4.957, iskew = c(2.811,-2.158),
	itail = 1.57, noopt=TRUE))

# Stable model with tail=tail_h(b0+b1*day)
print(z6 <- stablereg(y = ret, delta = 1/y[1:49], loc = ret ~ 1,
	disp = ~1, skew = ~1, tail = ~day, iloc = 0.002,
	idisp = -4.8, iskew = -2, itail = c(2.4,-4), hessian=FALSE))

}
\references{
Lambert, P. and Lindsey, J.K. (1999) Analysing financial returns
using regression models based on non-symmetric stable distributions. Applied
Statistics 48, 409-424.
}
\seealso{
\code{\link{lm}}, \code{\link{glm}}, \code{stable}
and \code{stable.mode}.
}
\author{
Philippe Lambert (Catholic University of Louvain, Belgium,
\email{phlambert@stat.ucl.ac.be}) and Jim Lindsey.
}
\keyword{models}