1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103
|
\name{similarity_measures_classification}
\alias{similarity_measures}
\alias{similarity_measures_classification}
\alias{clagree}
\alias{ckappa}
\alias{bdist}
\alias{tvdist}
\alias{hdist}
\alias{jsdiv}
\title{Similarity Measure Infrastructure for Stability Assessment with Ordinal Responses}
\description{
Functions that provide objects with functionality used by
\code{\link{stability}} to measure the similarity between the predictions
of two results in classification problems.
}
\usage{
clagree()
ckappa()
bdist()
tvdist()
hdist()
jsdiv(base = 2)
}
\arguments{
\item{base}{A positive or complex number: the base with respect to which
logarithms are computed. Defaults to 2.}
}
\details{
The similarity measure functions provide objects that include functionality
used by \code{\link{stability}} to measure the similarity between the
probability predictions of two results in classification problems.
The \code{clagree} and \code{ckappa} functions provide an object that can be
used to assess the similarity based on the predicted classes of two results.
The predicted classes are selected by the class with the highest probability.
The \code{bdist} (Bhattacharayya distance), \code{tvdist} (Total variation
distance), \code{hdist} (Hellinger distance) and \code{jsdist}
(Jenson-Shannon divergence) functions provide an object that can be
used to assess the similarity based on the predicted class probabilities of
two results.
}
\seealso{\code{\link{stability}}}
\examples{
\donttest{
set.seed(0)
## build trees
library("partykit")
m1 <- ctree(Species ~ ., data = iris[sample(1:nrow(iris), replace = TRUE),])
m2 <- ctree(Species ~ ., data = iris[sample(1:nrow(iris), replace = TRUE),])
p1 <- predict(m1, type = "prob")
p2 <- predict(m2, type = "prob")
## class agreement
m <- clagree()
m$measure(p1, p2)
## cohen's kappa
m <- ckappa()
m$measure(p1, p2)
## bhattacharayya distance
m <- bdist()
m$measure(p1, p2)
## total variation distance
m <- tvdist()
m$measure(p1, p2)
## hellinger distance
m <- hdist()
m$measure(p1, p2)
## jenson-shannon divergence
m <- jsdiv()
m$measure(p1, p2)
## jenson-shannon divergence (base = exp(1))
m <- jsdiv(base = exp(1))
m$measure(p1, p2)
}
}
\keyword{stability}
\keyword{similariy}
\keyword{measures}
|