1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138
|
\name{similarity_measures_regression}
\alias{similarity_measures_regression}
\alias{edist}
\alias{msdist}
\alias{rmsdist}
\alias{madist}
\alias{qadist}
\alias{cprob}
\alias{ccc}
\alias{pcc}
\alias{cosine}
\alias{rbfkernel}
\alias{tanimoto}
\title{Similarity Measure Infrastructure for Stability Assessment with Numerical Responses}
\description{
Functions that provide objects with functionality used by
\code{\link{stability}} to measure the similarity between numeric
predictions of two results in regression problems.
}
\usage{
edist()
msdist()
rmsdist()
madist()
qadist(p = 0.95)
cprob(kappa = 0.1)
rbfkernel()
tanimoto()
cosine()
ccc()
pcc()
}
\arguments{
\item{p}{A numeric value between 0 and 1 specifying the probability to which
the sample quantile of the absolute distance between the predictions is
computed.}
\item{kappa}{A positive numeric value specifying the upper limit of the
absolute distance between the predictions to which the coverage probability
is computed.}
}
\details{
The similarity measure functions provide objects that include functionality
used by \code{\link{stability}} to measure the similarity between numeric
predictions of two results in regression problems.
The \code{edist} (euclidean distance), \code{msdist} (mean squared distance),
\code{rmsdist} (root mean squared distance), \code{madist} (mean absolute
distance) and \code{qadist} (quantile of absolute distance) functions
implement scale-variant distance measures that are unbounded.
The \code{cprob} (coverage probability), \code{rbfkernel} (gaussian radial
basis function kernel), \code{tanimoto} (tanimoto coefficient) and
\code{cosine} (cosine similarity) functions implement scale-variant distance
measures that are bounded.
The \code{ccc} (concordance correlation coefficient) and \code{pcc} (pearson
correlation coefficient) functions implement scale-invariant distance
measures that are bounded between 0 and 1.
}
\seealso{\code{\link{stability}}}
\examples{
\donttest{
set.seed(0)
library("partykit")
airq <- subset(airquality, !is.na(Ozone))
m1 <- ctree(Ozone ~ ., data = airq[sample(1:nrow(airq), replace = TRUE),])
m2 <- ctree(Ozone ~ ., data = airq[sample(1:nrow(airq), replace = TRUE),])
p1 <- predict(m1)
p2 <- predict(m2)
## euclidean distance
m <- edist()
m$measure(p1, p2)
## mean squared distance
m <- msdist()
m$measure(p1, p2)
## root mean squared distance
m <- rmsdist()
m$measure(p1, p2)
## mean absolute istance
m <- madist()
m$measure(p1, p2)
## quantile of absolute distance
m <- qadist()
m$measure(p1, p2)
## coverage probability
m <- cprob()
m$measure(p1, p2)
## gaussian radial basis function kernel
m <- rbfkernel()
m$measure(p1, p2)
## tanimoto coefficient
m <- tanimoto()
m$measure(p1, p2)
## cosine similarity
m <- cosine()
m$measure(p1, p2)
## concordance correlation coefficient
m <- ccc()
m$measure(p1, p2)
## pearson correlation coefficient
m <- pcc()
m$measure(p1, p2)
}
}
\keyword{stability}
\keyword{similariy}
\keyword{measures}
|