File: invgauss.R

package info (click to toggle)
r-cran-statmod 1.4.20-1
  • links: PTS, VCS
  • area: main
  • in suites: jessie, jessie-kfreebsd
  • size: 332 kB
  • ctags: 13
  • sloc: fortran: 75; makefile: 3
file content (239 lines) | stat: -rw-r--r-- 6,336 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
dinvgauss <- function(x, mean=1, shape=NULL, dispersion=1, log=FALSE)
#	Probability density function of inverse Gaussian distribution
#	Gordon Smyth
#	Created 15 Jan 1998.  Last revised 31 May 2014.
{
#	Dispersion is reciprocal of shape
	if(!is.null(shape)) dispersion <- 1/shape

#	Make arguments same length
	nx <- length(x)
	if(nx==0) return(numeric(0))
	n <- max(nx,length(mean),length(dispersion))
	if(n>nx) x <- rep_len(x,n)
	mu <- rep_len(mean,n)
	phi <- rep_len(dispersion,n)

#	Special cases
	NA.cases <- (is.na(x) | mu<=0 | phi<=0)
	left.limit <- x<=0
	right.limit <- x==Inf

#	Check for attributes
	has.attr <- !is.null(attributes(x))

	any.special <- has.attr | any(NA.cases) | any(left.limit) | any(right.limit)
	if(any.special) {
		logd <- x
		logd[left.limit] <- -Inf
		logd[right.limit] <- -Inf
		logd[NA.cases] <- NA
		ok <- !(NA.cases | left.limit | right.limit)
		logd[ok] <- .dinvgauss(x[ok],mean=mu[ok],dispersion=phi[ok],log=TRUE)
	} else {
		logd <- .dinvgauss(x,mean=mu,dispersion=phi,log=TRUE)
	}

	if(log) logd else exp(logd)
}

.dinvgauss <- function(x, mean=NULL, dispersion=1, log=FALSE)
#	Probability density function of inverse Gaussian distribution
#	with no argument checking and assuming mean=1
{
	notnullmean <- !is.null(mean)
	if(notnullmean) {
		x <- x/mean
		dispersion <- dispersion*mean
	}
	d <- (-log(dispersion)-log(2*pi)-3*log(x) - (x-1)^2/dispersion/x)/2
	if(notnullmean) d <- d-log(mean)
	if(log) d else exp(d)
}

pinvgauss <- function(q, mean=1, shape=NULL, dispersion=1, lower.tail=TRUE, log.p=FALSE)
#	Cumulative distribution function of inverse Gaussian distribution
#	Gordon Smyth
#	Created 15 Jan 1998.  Last revised 29 May 2014.
{
#	Dispersion is reciprocal of shape
	if(!is.null(shape)) dispersion <- 1/shape

#	Make arguments same length
	nq <- length(q)
	if(nq==0) return(numeric(0))
	n <- max(nq,length(mean),length(dispersion))
	if(n>nq) q <- rep_len(q,n)
	mu <- rep_len(mean,n)
	phi <- rep_len(dispersion,n)

#	Special cases
	NA.cases <- (is.na(q) | mu<=0 | phi<=0)
	left.limit <- q<=0
	right.limit <- q==Inf

#	Check for attributes
	has.attr <- !is.null(attributes(q))

	any.special <- has.attr | any(NA.cases) | any(left.limit) | any(right.limit)
	if(any.special) {
		logp <- q
		if(lower.tail) {
			logp[left.limit] <- -Inf
			logp[right.limit] <- 0
		} else {
			logp[left.limit] <- 0
			logp[right.limit] <- -Inf
		}
		logp[NA.cases] <- NA
		ok <- !(NA.cases | left.limit | right.limit)
		logp[ok] <- .pinvgauss(q[ok],mean=mu[ok],dispersion=phi[ok],lower.tail=lower.tail,log.p=TRUE)
	} else {
		logp <- .pinvgauss(q,mean=mu,dispersion=phi,lower.tail=lower.tail,log.p=TRUE)
	}

	if(log.p) logp else(exp(logp))
}

.pinvgauss <- function(q, mean=NULL, dispersion=1, lower.tail=TRUE, log.p=FALSE)
#	Cumulative distribution function of inverse Gaussian distribution
#	without argument checking
{
	if(!is.null(mean)) {
		q <- q/mean
		dispersion <- dispersion*mean
	}
	pq <- sqrt(dispersion*q)
	a <- pnorm((q-1)/pq,lower.tail=lower.tail,log.p=TRUE)
	b <- 2/dispersion + pnorm(-(q+1)/pq,log.p=TRUE)
	if(lower.tail) b <- exp(b-a) else b <- -exp(b-a)
	logp <- a+log1p(b)
	if(log.p) logp else exp(logp)
}

rinvgauss <- function(n, mean=1, shape=NULL, dispersion=1)
#	Random variates from inverse Gaussian distribution
#	Gordon Smyth (with a correction by Trevor Park 14 June 2005)
#	Created 15 Jan 1998.  Last revised 27 May 2014.
{
#	Check input
	if(length(n)>1) n <- length(n)
	if(n<0) stop("n can't be negative")
	n <- as.integer(n)
	if(n==0) return(numeric(0))
	if(!is.null(shape)) dispersion <- 1/shape

#	Make arguments same length
	mu <- rep_len(mean,n)
	phi <- rep_len(dispersion,n)

#	Setup output vector
	r <- rep_len(0,n)

#	Non-positive parameters give NA
	i <- (mu > 0 & phi > 0)
	if(!all(i)) {
		r[!i] <- NA
		n <- sum(i)
	}

#	Divide out mu	
	phi[i] <- phi[i]*mu[i]

	Y <- rchisq(n,df=1)
	X1 <- 1 + phi[i]/2 * (Y - sqrt(4*Y/phi[i]+Y^2))
	firstroot <- as.logical(rbinom(n,size=1L,prob=1/(1+X1)))
	r[i][firstroot] <- X1[firstroot]
	r[i][!firstroot] <- 1/X1[!firstroot]

	mu*r
}

qinvgauss  <- function(p, mean=1, shape=NULL, dispersion=1, lower.tail=TRUE, log.p=FALSE, maxit=50L, tol=1e-5, trace=FALSE)
#	Quantiles of the inverse Gaussian distribution
#	Gordon Smyth
#	Last revised 31 May 2014.
{
#	Check input
	n <- length(p)
	if(n==0) return(numeric(0))
	if(!is.null(shape)) dispersion <- 1/shape
	mu <- rep_len(mean,n)
	phi <- rep_len(dispersion,n)

#	Setup output
	q <- p

#	Special cases
	if(log.p) {
		NA.cases <- (is.na(p) | p>0 | mu<=0 | phi<=0)
		if(lower.tail) {
			left.limit <- p == -Inf
			right.limit <- p == 0
		} else {
			left.limit <- p == 0
			right.limit <- p == -Inf
		}
	} else {
		NA.cases <- (is.na(p) | p<0 | p>1 | mu<=0 | phi<=0)
		if(lower.tail) {
			left.limit <- p == 0
			right.limit <- p == 1
		} else {
			left.limit <- p == 1
			right.limit <- p == 0
		}
	}
	q[left.limit] <- 0
	q[right.limit] <- Inf
	q[NA.cases] <- NA
	ok <- !(NA.cases | left.limit | right.limit)

#	Convert to mean=1
	phi <- phi[ok]*mu[ok]
	p <- p[ok]

#	Mode of density and point of inflexion of cdf
	phi2 <- 1.5*phi
	x <- sqrt(1+phi2^2)-phi2
	if(trace) cat("mode",x,"\n")

	if(log.p) {
		step <- function(p,x,phi) {
			logF <- .pinvgauss(x,dispersion=phi,lower.tail=lower.tail,log.p=TRUE)
			logf <- .dinvgauss(x,dispersion=phi,log=TRUE)
			dlogp <- p-logF
			pos <- p>logF
			maxlogp <- logF
			maxlogp[pos] <- p[pos]
			d <- exp(maxlogp+log1p(-exp(-abs(dlogp)))-logf)
			d[!pos] <- -d[!pos]
			d
		}
	} else {
		step <- function(p,x,phi) (p - .pinvgauss(x, dispersion=phi, lower.tail=lower.tail)) / .dinvgauss(x, dispersion=phi)
	}

#	Newton iteration is monotonically convergent from point of inflexion
	iter <- 0
	i <- rep_len(TRUE,length(phi))
	while(any(i)) {
		iter <- iter+1
		if(iter > maxit) {
			warning("max iterations exceeded")
			break
		}
		dx <- step(p[i],x[i],phi[i])
		if(lower.tail)
			x[i] <- x[i] + dx
		else
			x[i] <- x[i] - dx
		i[i] <- (abs(dx) > tol)
		if(trace) cat("Iter=",iter,"Still converging=",sum(i),"\n")
		if(trace) cat(iter,x,"\n")
	}

#	Mu scales the distribution
	q[ok] <- x*mu[ok]
	q
}