File: statmod-Tests.R

package info (click to toggle)
r-cran-statmod 1.4.20-1
  • links: PTS, VCS
  • area: main
  • in suites: jessie, jessie-kfreebsd
  • size: 332 kB
  • ctags: 13
  • sloc: fortran: 75; makefile: 3
file content (98 lines) | stat: -rw-r--r-- 2,591 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
library(statmod)

set.seed(0); u <- runif(100)

### fitNBP

y <- matrix(rnbinom(2*4,mu=4,size=1.5),2,4)
lib.size <- rep(50000,4)
group <- c(1,1,2,2)
fitNBP(y,group=group,lib.size=lib.size)

### glmgam.fit

glmgam.fit(1,1)
glmgam.fit(c(1,1),c(0,4))
glmgam.fit(X=cbind(1,c(1,0.5,0.5,0,0)),y=rchisq(5,df=1))

### glmnb.fit
y <- rnbinom(5,mu=10,size=10)
glmnb.fit(X=cbind(1,c(1,0.5,0.5,0,0)),y=y,dispersion=0.1)
glmnb.fit(X=cbind(1,c(1,0.5,0.5,0,0)),y=y,dispersion=runif(6))
glmnb.fit(X=cbind(1,c(1,1,0,0,0)),y=c(0,0,6,2,9),dispersion=0.1)

### mixedModel2

y <- rnorm(6)
x <- rnorm(6)
z <- c(1,1,2,2,3,3)
m <- mixedModel2(y~x,random=z)
m$reml.residuals <- m$qr <- NULL
m

### mixedModel2Fit

y <- c(-1,1,-2,2,0.5,1.7,-0.1)
X <- matrix(1,7,1)
Z <- model.matrix(~0+factor(c(1,1,2,2,3,3,4)))
m <- mixedModel2Fit(y,X,Z)
m$reml.residuals <- m$qr <- NULL
m

### qresiduals

y <- rnorm(6)
fit <- glm(y~1)
residuals(fit)
qresiduals(fit)
qresiduals(fit,dispersion=1)

if(require("MASS")) {
fit <- glm(Days~Age,family=negative.binomial(2),data=quine)
print(summary(qresiduals(fit)))
fit <- glm.nb(Days~Age,link=log,data = quine)
print(summary(qresiduals(fit)))
}

### gauss.quad

options(digits=10)
g <- gauss.quad(5,"legendre")
zapsmall(data.frame(g),digits=15)
g <- gauss.quad(5,"chebyshev1")
zapsmall(data.frame(g),digits=15)
g <- gauss.quad(5,"chebyshev2")
zapsmall(data.frame(g),digits=15)
g <- gauss.quad(5,"hermite")
zapsmall(data.frame(g),digits=15)
g <- gauss.quad(5,"laguerre",alpha=5)
zapsmall(data.frame(g),digits=15)
g <- gauss.quad(5,"jacobi",alpha=5,beta=1.1)
zapsmall(data.frame(g),digits=15)
g <- gauss.quad.prob(5,dist="uniform")
zapsmall(data.frame(g),digits=15)
g <- gauss.quad.prob(5,dist="normal")
zapsmall(data.frame(g),digits=15)
g <- gauss.quad.prob(5,dist="beta")
zapsmall(data.frame(g),digits=15)
g <- gauss.quad.prob(5,dist="gamma")
zapsmall(data.frame(g),digits=15)

### invgauss

pinvgauss(c(0,0.1,1,2.3,3.1,NA),mean=c(1,2,3,0,1,2),dispersion=0.5)
pinvgauss(c(0,0.1,1,2.3,3.1,NA),mean=c(1,2,3,0,1,2),dispersion=0.5,log.p=TRUE)
pinvgauss(c(0,0.1,1,2.3,3.1,NA),mean=c(1,2,3,0,1,2),dispersion=0.5,lower.tail=FALSE,log.p=TRUE)
p <- c(0,0.001,0.5,0.999,1)
qinvgauss(p,mean=1.3,dispersion=0.6)
qinvgauss(p,mean=1.3,dispersion=0.6,lower.tail=FALSE)
qinvgauss(log(p),mean=1.3,dispersion=0.6,log.p=TRUE)
qinvgauss(log(p),mean=1.3,dispersion=0.6,lower.tail=FALSE,log.p=TRUE)


### extra tests done only locally

#GKSTest <- Sys.getenv("GKSTest")
#if(GKSTest=="on") {
#print("hello")
#}