File: elda.R

package info (click to toggle)
r-cran-statmod 1.5.0-1
  • links: PTS, VCS
  • area: main
  • in suites: bookworm, forky, sid, trixie
  • size: 468 kB
  • sloc: ansic: 311; fortran: 76; sh: 4; makefile: 2
file content (313 lines) | stat: -rw-r--r-- 10,693 bytes parent folder | download | duplicates (4)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
#  LIMDIL.R

elda <- limdil <- function(response, dose, tested = rep(1, length(response)), group=rep(1,length(response)), observed = FALSE, confidence = 0.95, test.unit.slope = FALSE) 
#	Limiting dilution analysis
#	Gordon Smyth, Yifang Hu
#	21 June 2005. Last revised 18 August 2015.
{
	n <- length(response)
	if(n==0) stop("No data")
	if(length(dose) != n) stop("length(dose) doesn't match length(response)")
	if(length(tested) != n) {
		if(length(tested)==1)
			tested <- rep_len(tested,n)
		else
			stop("length(tested) doesn't match length(response)")
	}

#	Allow for structural zeros
	SZ <- response==0 & (dose==0 | tested==0)
	if(any(SZ)) {
		i <- !SZ
		out <- Recall(response=response[i],dose=dose[i],tested=tested[i],group=group[i],observed=observed,confidence=confidence,test.unit.slope=test.unit.slope)
		out$response <- response
		out$dose <- dose
		out$tested <- tested
		return(out)
	}

#	Check valid data
	y <- response/tested
	if (any(y < 0)) stop("Negative values for response or tested")
	if (any(y > 1)) stop("The response cannot be greater than the number tested")
	if (any(dose <= 0)) stop("dose must be positive")

	size <- 1 - confidence
	out <- list()
	f <- binomial(link = "cloglog")
	f$aic <- quasi()$aic

	group <- factor(group)
	num.group <- length(levels(group))
	groupLevel <- levels(group)

	out$response <- response
	out$tested <- tested
	out$dose <- dose
	out$group <- group
	out$num.group <- num.group
	class(out) <- "limdil"

	out$CI <- matrix(nrow=num.group,ncol=3)
	colnames(out$CI) <- c("Lower","Estimate","Upper")
	rownames(out$CI) <- paste("Group",levels(group))

#	Groupwise frequency estimates
	deviance0 <- dloglik.logdose <- FisherInfo.logdose <- dloglik.dose <- FisherInfo.dose <- 0
	for(i in 1:num.group) {
		index <- (group == groupLevel[i])
		fit0 <- eldaOneGroup(response=response[index],dose=dose[index],tested=tested[index],observed=observed,confidence=confidence,trace=FALSE)
		deviance0 <- deviance0 + fit0$deviance
		dloglik.logdose <- dloglik.logdose + fit0$dloglik.logdose
		FisherInfo.logdose <- FisherInfo.logdose + fit0$FisherInfo.logdose
		dloglik.dose <- dloglik.dose + fit0$dloglik.dose
		FisherInfo.dose <- FisherInfo.dose + fit0$FisherInfo.dose
		out$CI[i,] <- pmax(fit0$CI.frequency,1)
	}

#	Test for difference between groups
	if(num.group>1) {
		fitequal <- eldaOneGroup(response=response,dose=dose,tested=tested,observed=observed,confidence=confidence,trace=FALSE)
		dev.g <- pmax(fitequal$deviance - deviance0, 0)
		group.p <- pchisq(dev.g, df=num.group-1, lower.tail=FALSE)
		out$test.difference <- c(Chisq=dev.g, P.value=group.p, df=num.group-1)
	}

#	Test for unit slope
	if(test.unit.slope) {
		if(is.na(FisherInfo.logdose)) FisherInfo.logdose <- 0
		if(FisherInfo.logdose > 1e-15) {

#			Wald test
			if(num.group>1)
				fit.slope <- suppressWarnings(glm(y~group+log(dose), family=f, weights=tested))
			else
				fit.slope <- suppressWarnings(glm(y~log(dose), family=f, weights=tested))
			s.slope <- summary(fit.slope)
			est.slope <- s.slope$coef["log(dose)","Estimate"]
			se.slope <- s.slope$coef["log(dose)", "Std. Error"]
			z.wald <- (est.slope-1)/se.slope
			p.wald <- 2*pnorm(-abs(z.wald))
			out$test.slope.wald <- c("Estimate"=est.slope, "Std. Error"=se.slope, "z value"=z.wald, "Pr(>|z|)"=p.wald)

#			Likelihood ratio test
			dev <- pmax(deviance0 - fit.slope$deviance,0)
			z.lr <- sqrt(dev)*sign(z.wald)
			p.lr <- pchisq(dev, df = 1, lower.tail = FALSE)
			out$test.slope.lr <- c("Estimate"=NA, "Std. Error"=NA, "z value"=z.lr, "Pr(>|z|)"=p.lr)

#			Score tests for log(dose) and dose
			z.score.logdose <- dloglik.logdose / sqrt(FisherInfo.logdose)
			p.score.logdose <- 2*pnorm(-abs(z.score.logdose))
			z.score.dose <- dloglik.dose / sqrt(FisherInfo.dose)
			p.score.dose <- 2*pnorm(-abs(z.score.dose))
			out$test.slope.score.logdose <- c("Estimate"= NA, "Std. Error"=NA, "z value"=z.score.logdose,"Pr(>|z|)"=p.score.logdose)
			out$test.slope.score.dose <- c("Estimate"= NA, "Std. Error"=NA, "z value"=z.score.dose,"Pr(>|z|)"=p.score.dose)

		} else {
			out$test.slope.wald <- out$test.slope.lr <- out$test.slope.score.logdose <- out$test.slope.score.dose  <- c("Estimate"=NA, "Std. Error"=NA, "z value"=NA, "Pr(>|z|)"=1)
		}
	}

	out
}

print.limdil <- function(x, ...)
#	Print method for limdil objects
#	Yifang Hu and Gordon Smyth
#	20 February 2009. Last revised 31 January 2013.
{
	cat("Confidence intervals for frequency:\n\n")
	print(x$CI)
	
	if(!is.null(x$test.difference)) {
		difference <- x$test.difference
		cat("\nDifferences between groups:\n")
		cat("Chisq",difference[1], "on", difference[3], "DF, p-value:", format.pval(difference[2],4), "\n")
	}

	if(!is.null(x$test.slope.wald)) {
		a <- rbind(x$test.slope.wald, x$test.slope.lr, x$test.slope.score.logdose, x$test.slope.score.dose)
		a <- data.frame(a, check.names=FALSE)
		rownames(a) <- c("Wald test", "LR test", "Score test: log(Dose)", "Score test: Dose")
		cat("\nGoodness of fit (test log-Dose slope equals 1):\n")
		suppressWarnings(printCoefmat(a,tst.ind=1,has.Pvalue=TRUE,P.values=TRUE))
	}
}

plot.limdil <- function(x, col.group=NULL, cex=1, lwd=1, legend.pos="bottomleft", ...)
#	Plot method for limdil objects
#	Yifang Hu and Gordon Smyth
#	20 February 2009.  Last revised 6 February 2013.
{
	x$group <- factor(x$group)
	num.group <- nlevels(x$group)
	if(is.null(col.group)) 
		col.group <- 1:num.group
	else
		col.group <- rep(col.group,num.group)

	col <- x$group
	levels(col) <- col.group
	col <- as.character(col)
	dose <- x$dose
	maxx <- max(dose)	
	
	i <- x$response==x$tested
	x$response[i] <- x$response[i]-0.5

	nonres <- log(1-x$response/x$tested)
	if(num.group>1 && any(i)) nonres <- pmin(0,jitter(nonres))
		
	miny <- min(nonres)
	plot(x=1,y=1,xlim=c(0,maxx),ylim=c(min(miny,-0.5),0),xlab="dose (number of cells)",ylab="log fraction nonresponding",type="n",...)
	points(dose[!i],nonres[!i],pch=1,col=col[!i],cex=cex)
	points(dose[i],nonres[i],pch=6,col=col[i],cex=cex)

	for(g in 1:num.group) {
		abline(a=0,b=-1/x$CI[g,2],col=col.group[g],lty=1,lwd=lwd)
		abline(a=0,b=-1/x$CI[g,1],col=col.group[g],lty=2,lwd=lwd)
		abline(a=0,b=-1/x$CI[g,3],col=col.group[g],lty=2,lwd=lwd)
	}
	if(num.group>1) legend(legend.pos,legend=paste("Group",levels(x$group)),text.col=col.group,cex=0.6*cex)
	invisible(list(x=dose,y=nonres,group=x$group))
}

.limdil.allpos <- function(tested, dose, confidence, observed)
#	One-sided confidence interval when all assays are positive
#	Uses globally convergent Newton iteration
#	Yifang Hu.
#	Created 18 March 2009.  Last modified 18 Dec 2012.
{
	alpha <- 1 - confidence

	dosem <- min(dose)
	tested.group <- tested
	tested.sum <- sum(tested.group[dose == dosem])
	beta <- log(-log(1 - alpha^(1/tested.sum))) - log(dosem)

#	Starting value
	lambda <- exp(beta)
	if(observed) lambda <- -expm1(lambda)

#	Newton-iteration
	repeat {
		if(observed)
			f <- sum(tested*log(1-(1-lambda)^dose))-log(alpha)
		else
			f <- sum(tested*log(1-exp(-lambda*dose)))-log(alpha)
		if(observed)
			deriv <- sum(tested*(-dose)*(1-lambda)^(dose-1)/(1-(1-lambda)^dose)) 
		else
			deriv <- sum(tested*dose*exp(-dose*lambda)/(1-exp(-dose*lambda)))
		step <- f/deriv
		lambda <- lambda-step
		if(-step < 1e-6) break
	}
	lambda
}

eldaOneGroup <- function(response,dose,tested,observed=FALSE,confidence=0.95,tol=1e-8,maxit=100,trace=FALSE)
#	Estimate active cell frequency from LDA data
#	using globally convergent Newton iteration
#	Gordon Smyth
#	5 Dec 2012.  Last modified 30 Jan 2013.
{
	y <- response
	n <- tested
	d <- dose
	phat <- y/n
	size <- 1-confidence

#	Special case of all negative responses
	if(all(y < 1e-14)) {
	 	N <- sum(dose*tested)
		if (observed)
			U <- 1 - size^(1/N)
		else
			U <- -log(size)/N
		out <- list()
		out$CI.frequency <- c(Lower = Inf, Estimate = Inf, Upper = 1/U)
		out$deviance <- out$dloglik.logdose <- out$FisherInfo.logdose <- out$dloglik.dose <- out$FisherInfo.dose <- 0
		return(out)
	}

#	Special case of all positive responses
	if(all(phat > 1-1e-14)) {
		U <- .limdil.allpos(tested=tested,dose=dose,confidence=confidence,observed=observed)
		out <- list()
		out$CI.frequency <- c(Lower = 1/U, Estimate = 1, Upper = 1)
		out$deviance <- out$dloglik.logdose <- out$FisherInfo.logdose <- out$dloglik.dose <- out$FisherInfo.dose <- 0
		return(out)
	}

#	Starting value guaranteed to be left of the solution
	pmean <- mean(y)/mean(n)
	lambda <- -log1p(-pmean) / max(d)
	if(trace) cat(0,lambda,1/lambda,"\n")

#	Globally convergent Newton iteration
	iter <- 0
	repeat{
		iter <- iter+1
		if(iter > maxit) {
			warning("max iterations exceeded")
			break
		}
		p <- -expm1(-lambda*d)
		onemp <- exp(-lambda*d)

#		First derivative
		dloglik.lambda <- mean(n*d*(phat-p)/p)

#		Second derivative
		d2loglik.lambda <- -mean(n*phat*d*d*onemp/p/p)

#		Newton step
		step <- dloglik.lambda / d2loglik.lambda
		lambda <- lambda - step
		if(trace) cat(iter,lambda,1/lambda,step,"\n")
		if(abs(step) < tol) break
	}

#	Wald confidence interval for alpha
	alpha <- log(lambda)
	p <- -expm1(-lambda*d)
	onemp <- exp(-lambda*d)
	FisherInfo.alpha <- sum(n*d*d*onemp/p)*lambda^2
	SE.alpha <- 1/sqrt(FisherInfo.alpha)
	z <- qnorm( (1-confidence)/2, lower.tail=FALSE )
	CI.alpha <- c(Lower=alpha-z*SE.alpha,Estimate=alpha,Upper=alpha+z*SE.alpha)

#	Wald confidence interval for frequency
	if(observed)
		CI.frequency <- -1/expm1(-exp(CI.alpha))
	else
		CI.frequency <- exp(-CI.alpha)

#	Deviance
	f <- binomial(link="cloglog")
	deviance <- sum(f$dev.resid(phat,p,n))

#	Score test for log(dose) unit slope
	v <- p*onemp/n
	x <- log(d)
	eta <- alpha+x
	mu.eta <- f$mu.eta(eta)
	info.alpha <- mu.eta^2/v
	xmean <- sum(x*info.alpha)/sum(info.alpha)
	mu.beta <- (x-xmean)*mu.eta
	dloglik.beta <- sum(mu.beta*(phat-p)/v)
	FisherInfo.beta <- sum(mu.beta^2/v)
	z.scoretest <- dloglik.beta/sqrt(FisherInfo.beta)

#	Score test for dose
	x <- d
	xmean <- sum(x*info.alpha)/sum(info.alpha)
	mu.beta <- (x-xmean)*mu.eta
	dloglik.beta.dose <- sum(mu.beta*(phat-p)/v)
	FisherInfo.beta.dose <- sum(mu.beta^2/v)
	z.scoretest.dose <- dloglik.beta.dose/sqrt(FisherInfo.beta.dose)

	list(p=p,lambda=lambda,alpha=alpha,CI.alpha=CI.alpha,CI.frequency=CI.frequency,deviance=deviance,iter=iter,z.scoretest=z.scoretest,z.scoretest.dose=z.scoretest.dose,dloglik.logdose=dloglik.beta,FisherInfo.logdose=FisherInfo.beta,dloglik.dose=dloglik.beta.dose,FisherInfo.dose=FisherInfo.beta.dose)
}