1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313
|
# LIMDIL.R
elda <- limdil <- function(response, dose, tested = rep(1, length(response)), group=rep(1,length(response)), observed = FALSE, confidence = 0.95, test.unit.slope = FALSE)
# Limiting dilution analysis
# Gordon Smyth, Yifang Hu
# 21 June 2005. Last revised 18 August 2015.
{
n <- length(response)
if(n==0) stop("No data")
if(length(dose) != n) stop("length(dose) doesn't match length(response)")
if(length(tested) != n) {
if(length(tested)==1)
tested <- rep_len(tested,n)
else
stop("length(tested) doesn't match length(response)")
}
# Allow for structural zeros
SZ <- response==0 & (dose==0 | tested==0)
if(any(SZ)) {
i <- !SZ
out <- Recall(response=response[i],dose=dose[i],tested=tested[i],group=group[i],observed=observed,confidence=confidence,test.unit.slope=test.unit.slope)
out$response <- response
out$dose <- dose
out$tested <- tested
return(out)
}
# Check valid data
y <- response/tested
if (any(y < 0)) stop("Negative values for response or tested")
if (any(y > 1)) stop("The response cannot be greater than the number tested")
if (any(dose <= 0)) stop("dose must be positive")
size <- 1 - confidence
out <- list()
f <- binomial(link = "cloglog")
f$aic <- quasi()$aic
group <- factor(group)
num.group <- length(levels(group))
groupLevel <- levels(group)
out$response <- response
out$tested <- tested
out$dose <- dose
out$group <- group
out$num.group <- num.group
class(out) <- "limdil"
out$CI <- matrix(nrow=num.group,ncol=3)
colnames(out$CI) <- c("Lower","Estimate","Upper")
rownames(out$CI) <- paste("Group",levels(group))
# Groupwise frequency estimates
deviance0 <- dloglik.logdose <- FisherInfo.logdose <- dloglik.dose <- FisherInfo.dose <- 0
for(i in 1:num.group) {
index <- (group == groupLevel[i])
fit0 <- eldaOneGroup(response=response[index],dose=dose[index],tested=tested[index],observed=observed,confidence=confidence,trace=FALSE)
deviance0 <- deviance0 + fit0$deviance
dloglik.logdose <- dloglik.logdose + fit0$dloglik.logdose
FisherInfo.logdose <- FisherInfo.logdose + fit0$FisherInfo.logdose
dloglik.dose <- dloglik.dose + fit0$dloglik.dose
FisherInfo.dose <- FisherInfo.dose + fit0$FisherInfo.dose
out$CI[i,] <- pmax(fit0$CI.frequency,1)
}
# Test for difference between groups
if(num.group>1) {
fitequal <- eldaOneGroup(response=response,dose=dose,tested=tested,observed=observed,confidence=confidence,trace=FALSE)
dev.g <- pmax(fitequal$deviance - deviance0, 0)
group.p <- pchisq(dev.g, df=num.group-1, lower.tail=FALSE)
out$test.difference <- c(Chisq=dev.g, P.value=group.p, df=num.group-1)
}
# Test for unit slope
if(test.unit.slope) {
if(is.na(FisherInfo.logdose)) FisherInfo.logdose <- 0
if(FisherInfo.logdose > 1e-15) {
# Wald test
if(num.group>1)
fit.slope <- suppressWarnings(glm(y~group+log(dose), family=f, weights=tested))
else
fit.slope <- suppressWarnings(glm(y~log(dose), family=f, weights=tested))
s.slope <- summary(fit.slope)
est.slope <- s.slope$coef["log(dose)","Estimate"]
se.slope <- s.slope$coef["log(dose)", "Std. Error"]
z.wald <- (est.slope-1)/se.slope
p.wald <- 2*pnorm(-abs(z.wald))
out$test.slope.wald <- c("Estimate"=est.slope, "Std. Error"=se.slope, "z value"=z.wald, "Pr(>|z|)"=p.wald)
# Likelihood ratio test
dev <- pmax(deviance0 - fit.slope$deviance,0)
z.lr <- sqrt(dev)*sign(z.wald)
p.lr <- pchisq(dev, df = 1, lower.tail = FALSE)
out$test.slope.lr <- c("Estimate"=NA, "Std. Error"=NA, "z value"=z.lr, "Pr(>|z|)"=p.lr)
# Score tests for log(dose) and dose
z.score.logdose <- dloglik.logdose / sqrt(FisherInfo.logdose)
p.score.logdose <- 2*pnorm(-abs(z.score.logdose))
z.score.dose <- dloglik.dose / sqrt(FisherInfo.dose)
p.score.dose <- 2*pnorm(-abs(z.score.dose))
out$test.slope.score.logdose <- c("Estimate"= NA, "Std. Error"=NA, "z value"=z.score.logdose,"Pr(>|z|)"=p.score.logdose)
out$test.slope.score.dose <- c("Estimate"= NA, "Std. Error"=NA, "z value"=z.score.dose,"Pr(>|z|)"=p.score.dose)
} else {
out$test.slope.wald <- out$test.slope.lr <- out$test.slope.score.logdose <- out$test.slope.score.dose <- c("Estimate"=NA, "Std. Error"=NA, "z value"=NA, "Pr(>|z|)"=1)
}
}
out
}
print.limdil <- function(x, ...)
# Print method for limdil objects
# Yifang Hu and Gordon Smyth
# 20 February 2009. Last revised 31 January 2013.
{
cat("Confidence intervals for frequency:\n\n")
print(x$CI)
if(!is.null(x$test.difference)) {
difference <- x$test.difference
cat("\nDifferences between groups:\n")
cat("Chisq",difference[1], "on", difference[3], "DF, p-value:", format.pval(difference[2],4), "\n")
}
if(!is.null(x$test.slope.wald)) {
a <- rbind(x$test.slope.wald, x$test.slope.lr, x$test.slope.score.logdose, x$test.slope.score.dose)
a <- data.frame(a, check.names=FALSE)
rownames(a) <- c("Wald test", "LR test", "Score test: log(Dose)", "Score test: Dose")
cat("\nGoodness of fit (test log-Dose slope equals 1):\n")
suppressWarnings(printCoefmat(a,tst.ind=1,has.Pvalue=TRUE,P.values=TRUE))
}
}
plot.limdil <- function(x, col.group=NULL, cex=1, lwd=1, legend.pos="bottomleft", ...)
# Plot method for limdil objects
# Yifang Hu and Gordon Smyth
# 20 February 2009. Last revised 6 February 2013.
{
x$group <- factor(x$group)
num.group <- nlevels(x$group)
if(is.null(col.group))
col.group <- 1:num.group
else
col.group <- rep(col.group,num.group)
col <- x$group
levels(col) <- col.group
col <- as.character(col)
dose <- x$dose
maxx <- max(dose)
i <- x$response==x$tested
x$response[i] <- x$response[i]-0.5
nonres <- log(1-x$response/x$tested)
if(num.group>1 && any(i)) nonres <- pmin(0,jitter(nonres))
miny <- min(nonres)
plot(x=1,y=1,xlim=c(0,maxx),ylim=c(min(miny,-0.5),0),xlab="dose (number of cells)",ylab="log fraction nonresponding",type="n",...)
points(dose[!i],nonres[!i],pch=1,col=col[!i],cex=cex)
points(dose[i],nonres[i],pch=6,col=col[i],cex=cex)
for(g in 1:num.group) {
abline(a=0,b=-1/x$CI[g,2],col=col.group[g],lty=1,lwd=lwd)
abline(a=0,b=-1/x$CI[g,1],col=col.group[g],lty=2,lwd=lwd)
abline(a=0,b=-1/x$CI[g,3],col=col.group[g],lty=2,lwd=lwd)
}
if(num.group>1) legend(legend.pos,legend=paste("Group",levels(x$group)),text.col=col.group,cex=0.6*cex)
invisible(list(x=dose,y=nonres,group=x$group))
}
.limdil.allpos <- function(tested, dose, confidence, observed)
# One-sided confidence interval when all assays are positive
# Uses globally convergent Newton iteration
# Yifang Hu.
# Created 18 March 2009. Last modified 18 Dec 2012.
{
alpha <- 1 - confidence
dosem <- min(dose)
tested.group <- tested
tested.sum <- sum(tested.group[dose == dosem])
beta <- log(-log(1 - alpha^(1/tested.sum))) - log(dosem)
# Starting value
lambda <- exp(beta)
if(observed) lambda <- -expm1(lambda)
# Newton-iteration
repeat {
if(observed)
f <- sum(tested*log(1-(1-lambda)^dose))-log(alpha)
else
f <- sum(tested*log(1-exp(-lambda*dose)))-log(alpha)
if(observed)
deriv <- sum(tested*(-dose)*(1-lambda)^(dose-1)/(1-(1-lambda)^dose))
else
deriv <- sum(tested*dose*exp(-dose*lambda)/(1-exp(-dose*lambda)))
step <- f/deriv
lambda <- lambda-step
if(-step < 1e-6) break
}
lambda
}
eldaOneGroup <- function(response,dose,tested,observed=FALSE,confidence=0.95,tol=1e-8,maxit=100,trace=FALSE)
# Estimate active cell frequency from LDA data
# using globally convergent Newton iteration
# Gordon Smyth
# 5 Dec 2012. Last modified 30 Jan 2013.
{
y <- response
n <- tested
d <- dose
phat <- y/n
size <- 1-confidence
# Special case of all negative responses
if(all(y < 1e-14)) {
N <- sum(dose*tested)
if (observed)
U <- 1 - size^(1/N)
else
U <- -log(size)/N
out <- list()
out$CI.frequency <- c(Lower = Inf, Estimate = Inf, Upper = 1/U)
out$deviance <- out$dloglik.logdose <- out$FisherInfo.logdose <- out$dloglik.dose <- out$FisherInfo.dose <- 0
return(out)
}
# Special case of all positive responses
if(all(phat > 1-1e-14)) {
U <- .limdil.allpos(tested=tested,dose=dose,confidence=confidence,observed=observed)
out <- list()
out$CI.frequency <- c(Lower = 1/U, Estimate = 1, Upper = 1)
out$deviance <- out$dloglik.logdose <- out$FisherInfo.logdose <- out$dloglik.dose <- out$FisherInfo.dose <- 0
return(out)
}
# Starting value guaranteed to be left of the solution
pmean <- mean(y)/mean(n)
lambda <- -log1p(-pmean) / max(d)
if(trace) cat(0,lambda,1/lambda,"\n")
# Globally convergent Newton iteration
iter <- 0
repeat{
iter <- iter+1
if(iter > maxit) {
warning("max iterations exceeded")
break
}
p <- -expm1(-lambda*d)
onemp <- exp(-lambda*d)
# First derivative
dloglik.lambda <- mean(n*d*(phat-p)/p)
# Second derivative
d2loglik.lambda <- -mean(n*phat*d*d*onemp/p/p)
# Newton step
step <- dloglik.lambda / d2loglik.lambda
lambda <- lambda - step
if(trace) cat(iter,lambda,1/lambda,step,"\n")
if(abs(step) < tol) break
}
# Wald confidence interval for alpha
alpha <- log(lambda)
p <- -expm1(-lambda*d)
onemp <- exp(-lambda*d)
FisherInfo.alpha <- sum(n*d*d*onemp/p)*lambda^2
SE.alpha <- 1/sqrt(FisherInfo.alpha)
z <- qnorm( (1-confidence)/2, lower.tail=FALSE )
CI.alpha <- c(Lower=alpha-z*SE.alpha,Estimate=alpha,Upper=alpha+z*SE.alpha)
# Wald confidence interval for frequency
if(observed)
CI.frequency <- -1/expm1(-exp(CI.alpha))
else
CI.frequency <- exp(-CI.alpha)
# Deviance
f <- binomial(link="cloglog")
deviance <- sum(f$dev.resid(phat,p,n))
# Score test for log(dose) unit slope
v <- p*onemp/n
x <- log(d)
eta <- alpha+x
mu.eta <- f$mu.eta(eta)
info.alpha <- mu.eta^2/v
xmean <- sum(x*info.alpha)/sum(info.alpha)
mu.beta <- (x-xmean)*mu.eta
dloglik.beta <- sum(mu.beta*(phat-p)/v)
FisherInfo.beta <- sum(mu.beta^2/v)
z.scoretest <- dloglik.beta/sqrt(FisherInfo.beta)
# Score test for dose
x <- d
xmean <- sum(x*info.alpha)/sum(info.alpha)
mu.beta <- (x-xmean)*mu.eta
dloglik.beta.dose <- sum(mu.beta*(phat-p)/v)
FisherInfo.beta.dose <- sum(mu.beta^2/v)
z.scoretest.dose <- dloglik.beta.dose/sqrt(FisherInfo.beta.dose)
list(p=p,lambda=lambda,alpha=alpha,CI.alpha=CI.alpha,CI.frequency=CI.frequency,deviance=deviance,iter=iter,z.scoretest=z.scoretest,z.scoretest.dose=z.scoretest.dose,dloglik.logdose=dloglik.beta,FisherInfo.logdose=FisherInfo.beta,dloglik.dose=dloglik.beta.dose,FisherInfo.dose=FisherInfo.beta.dose)
}
|