1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60
|
\name{remlscore}
\alias{remlscore}
\title{REML for Heteroscedastic Regression}
\description{
Fits a heteroscedastic regression model using residual maximum likelihood (REML).
}
\usage{
remlscore(y, X, Z, trace=FALSE, tol=1e-5, maxit=40)
}
\arguments{
\item{y}{numeric vector of responses}
\item{X}{design matrix for predicting the mean}
\item{Z}{design matrix for predicting the variance}
\item{trace}{Logical variable. If true then output diagnostic information at each iteration.}
\item{tol}{Convergence tolerance}
\item{maxit}{Maximum number of iterations allowed}
}
\value{
List with the following components:
\item{beta}{vector of regression coefficients for predicting the mean}
\item{se.beta}{vector of standard errors for beta}
\item{gamma}{vector of regression coefficients for predicting the variance}
\item{se.gam}{vector of standard errors for gamma}
\item{mu}{estimated means}
\item{phi}{estimated variances}
\item{deviance}{minus twice the REML log-likelihood}
\item{h}{numeric vector of leverages}
\item{cov.beta}{estimated covariance matrix for beta}
\item{cov.gam}{estimated covarate matrix for gamma}
\item{iter}{number of iterations used}
}
\details{
Write \eqn{\mu_i=E(y_i)}{mu_i = E(y_i)} and \eqn{\sigma^2_i=\mbox{var}(y_i)}{sigma_i^2 = var(y_i)} for the expectation and variance of the \eqn{i}{i'}th response.
We assume the heteroscedastic regression model
\deqn{\mu_i=\bold{x}_i^T\bold{\beta}}{mu_i = x_i^T beta}
\deqn{\log(\sigma^2_i)=\bold{z}_i^T\bold{\gamma},}{log(sigma_i^2 = z_i^T gamma ,}
where \eqn{\bold{x}_i}{x_i} and \eqn{\bold{z}_i}{z_i} are vectors of covariates, and \eqn{\bold{\beta}}{beta} and \eqn{\bold{\gamma}}{gamma} are vectors of regression coefficients affecting the mean and variance respectively.
Parameters are estimated by maximizing the REML likelihood using REML scoring as described in Smyth (2002).
}
\references{
Smyth, G. K. (2002).
An efficient algorithm for REML in heteroscedastic regression.
\emph{Journal of Computational and Graphical Statistics} \bold{11}, 836-847.
\doi{10.1198/106186002871}
}
\author{Gordon Smyth}
\examples{
data(welding)
attach(welding)
y <- Strength
# Reproduce results from Table 1 of Smyth (2002)
X <- cbind(1,(Drying+1)/2,(Material+1)/2)
colnames(X) <- c("1","B","C")
Z <- cbind(1,(Material+1)/2,(Method+1)/2,(Preheating+1)/2)
colnames(Z) <- c("1","C","H","I")
out <- remlscore(y,X,Z)
cbind(Estimate=out$gamma,SE=out$se.gam)
}
\keyword{regression}
|