File: comp.Rd

package info (click to toggle)
r-cran-survmisc 0.5.6-1
  • links: PTS, VCS
  • area: main
  • in suites: bookworm, forky, sid, trixie
  • size: 504 kB
  • sloc: makefile: 5
file content (246 lines) | stat: -rwxr--r-- 9,844 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
% Generated by roxygen2: do not edit by hand
% Please edit documentation in R/comp.R
\name{comp}
\alias{comp}
\alias{comp.ten}
\title{compare survival curves}
\usage{
comp(x, ...)

\method{comp}{ten}(x, ..., p = 1, q = 1, scores = seq.int(attr(x, "ncg")), reCalc = FALSE)
}
\arguments{
\item{x}{A \code{tne} object}

\item{...}{Additional arguments (not implemented).}

\item{p}{\eqn{p} for Fleming-Harrington test}

\item{q}{\eqn{q} for Fleming-Harrington test}

\item{scores}{scores for tests for trend}

\item{reCalc}{Recalcuate the values?
 \cr
If \code{reCalc=FALSE} (the default) and the \code{ten} object already has
the calculated values stored as an \code{attribute},
the value of the \code{attribute} is returned directly.}
}
\value{
The \code{tne} object is given
 additional \code{attributes}.
 \cr
The following are always added:
\item{lrt}{The \bold{l}og-\bold{r}ank family of \bold{t}ests}
\item{lrw}{The \bold{l}og-\bold{r}ank \bold{w}eights (used in calculating the tests).}
An additional item depends on the number of covariate groups.
\cr
If this is \eqn{=2}:
\item{sup}{The \bold{sup}remum or Renyi family of tests}
and if this is \eqn{>2}:
\item{tft}{Tests for trend. This is given as a \code{list}, 
 with the statistics and the scores used.}
}
\description{
compare survival curves
}
\details{
The \bold{log-rank} tests are formed from the following elements,
with values for each time where there is at least one event:
\itemize{
 \item \eqn{W_i}{W[i]}, the weights, given below.
 \item \eqn{e_i}{e[i]}, the number of events (per time).
 \item \eqn{\hat{e_i}}{P[i]}, the number of \emph{predicted} events,
                              given by \code{\link{predict}}.
 \item \eqn{COV_i}{COV[, , i]}, the covariance matrix for time \eqn{i},
                                given by \code{\link{COV}}.
}
It is calculated as:
 \deqn{Q_i = \sum{W_i (e_i - \hat{e}_i)}^T
             \sum{W_i \hat{COV_i} W_i^{-1}}
             \sum{W_i (e_i - \hat{e}_i)}}{
      Q[i] = sum(W[i] * (e[i] - P[i]))^T *
             sum(W[i] * COV[, , i] * W[i])^-1 *
             sum(W[i] * (e[i] - P[i]))}

If there are \eqn{K} groups, then \eqn{K-1} are selected (arbitrary).
 \cr
Likewise the corresponding variance-covariance matrix is reduced to the
appropriate \eqn{K-1 \times K-1}{K-1 * K-1} dimensions.
 \cr
\eqn{Q} is distributed as chi-square with \eqn{K-1} degrees of freedom.
\cr \cr
For \eqn{2} covariate groups, we can use:
\itemize{
 \item \eqn{e_i}{e[i]} the number of events (per time).
 \item \eqn{n_i}{e[i]} the number at risk overall.
 \item \eqn{e1_i}{e1[i]} the number of events in group \eqn{1}.
 \item \eqn{n1_i}{n1[i]} the number at risk in group \eqn{1}.
} 
Then:
 \deqn{Q = \frac{\sum{W_i [e1_i - n1_i (\frac{e_i}{n_i})]} }{
                \sqrt{\sum{W_i^2 \frac{n1_i}{n_i}
                           (1 - \frac{n1_i}{n_i})
                           (\frac{n_i - e_i}{n_i - 1}) e_i }}}}{
       Q = sum(W[i] * (e1[i] - n1[i] * e[i] / n[i])) /
          sqrt(sum(W[i]^2 * e1[i] / e[i] * (1 - n1[i] / n[i]) * (n[i] - e[i] / (n[i] - 1)) *e[i]))}
Below, for the Fleming-Harrington weights, 
\eqn{\hat{S}(t)}{S(t)} is the Kaplan-Meier (product-limit) estimator.
 \cr
Note that both \eqn{p} and \eqn{q} need to be \eqn{\geq 0}{>=0}.
 \cr \cr
The weights are given as follows:
\tabular{cll}{
 \eqn{1} \tab log-rank \tab \cr
 \eqn{n_i}{n[i]} \tab Gehan-Breslow generalized Wilcoxon \tab \cr
 \eqn{\sqrt{n_i}}{sqrt(n[i])} \tab Tarone-Ware \tab \cr
 \eqn{S1_i}{S1[i]} \tab Peto-Peto's modified survival estimate \tab
                   \eqn{\bar{S}(t)=\prod{1 - \frac{e_i}{n_i + 1}}}{
                            S1(t) = cumprod(1 - e / (n + 1))} \cr
 \eqn{S2_i}{S2[i]} \tab modified Peto-Peto (by Andersen) \tab
                    \eqn{\tilde{S}(t)=\bar{S} - \frac{n_i}{n_i + 1}}{
                              S2(t) = S1[i] * n[i] / (n[i] + 1) } \cr
 \eqn{FH_i}{FH[i]} \tab Fleming-Harrington \tab
                  The weight at \eqn{t_0 = 1} and thereafter is:
                   \eqn{\hat{S}(t_{i-1})^p [1-\hat{S}(t_{i-1})^q]}{
                        S(t[i - 1])^p * (1 - S(t)[i - 1]^q)}
}
The \bold{supremum (Renyi)} family of tests are designed
 to detect differences in survival curves which \emph{cross}.
\cr
That is, an early difference in survival in favor of one group
 is balanced by a later reversal.
\cr
The same weights as above are used.
\cr
They are calculated by finding
\deqn{Z(t_i) = \sum_{t_k \leq t_i} W(t_k)[e1_k - n1_k\frac{e_k}{n_k}], \quad i=1,2,...,k}{
      Z(t[i]) = SUM W(t[k]) [ e1[k] - n1[k]e[k]/n[k] ]}
(which is similar to the numerator used to find \eqn{Q}
in the log-rank test for 2 groups above).
\cr
and it's variance:
\deqn{\sigma^2(\tau) = \sum_{t_k \leq \tau} W(t_k)^2 \frac{n1_k n2_k (n_k-e_k) e_k}{n_k^2 (n_k-1)} }{
      simga^2(tau) = sum(k=1, 2, ..., tau) W(t[k]) (n1[k] * n2[k] * (n[k] - e[k]) * 
                                             e[k] / n[k]^2 * (n[k] - 1) ] }
where \eqn{\tau}{tau} is the largest \eqn{t}
where both groups have at least one subject at risk.
\cr \cr
Then calculate:
\deqn{ Q = \frac{ \sup{|Z(t)|}}{\sigma(\tau)}, \quad t<\tau }{
       Q = sup( |Z(t)| ) / sigma(tau), t < tau}
When the null hypothesis is true,
the distribution of \eqn{Q} is approximately
 \deqn{Q \sim \sup{|B(x)|, \quad 0 \leq x \leq 1}}{
       Q ~ sup( |B(x)|, 0 <= x <= 1)}
And for a standard Brownian motion (Wiener) process:
 \deqn{Pr[\sup|B(t)|>x] = 1 - \frac{4}{\pi}
                          \sum_{k=0}^{\infty}
                          \frac{(- 1)^k}{2k + 1} \exp{\frac{-\pi^2(2k + 1)^2}{8x^2}}}{
       Pr[sup|B(t)| > x] = 1 - 4 / pi sum((-1)^k / (2 * k + 1) * exp(-pi^2 (2k + 1)^2 / x^2))}
\bold{Tests for trend} are designed to detect ordered differences in survival curves.
\cr
That is, for at least one group:
\deqn{S_1(t) \geq S_2(t) \geq ... \geq S_K(t) \quad t \leq \tau}{
      S1(t) >= S2(t) >= ... >= SK(t) for t <= tau}
where \eqn{\tau}{tau} is the largest \eqn{t} where all groups have at least one subject at risk.
The null hypothesis is that
\deqn{S_1(t) = S_2(t) = ... = S_K(t) \quad t \leq \tau}{
      S1(t) = S2(t) = ... = SK(t) for t <= tau}
Scores used to construct the test are typically \eqn{s = 1,2,...,K},
but may be given as a vector representing a numeric characteristic of the group.
\cr
They are calculated by finding:
\deqn{ Z_j(t_i) = \sum_{t_i \leq \tau} W(t_i)[e_{ji} - n_{ji} \frac{e_i}{n_i}], 
                   \quad j=1,2,...,K}{
      Z[t(i)] = sum(W[t(i)] * (e[j](i) - n[j](i) * e(i) / n(i)))}
The test statistic is:
\deqn{Z = \frac{ \sum_{j=1}^K s_jZ_j(\tau)}{\sqrt{\sum_{j=1}^K \sum_{g=1}^K s_js_g \sigma_{jg}}} }{
      Z = sum(j=1, ..., K) s[j] * Z[j] / sum(j=1, ..., K) sum(g=1, ..., K) 
                                         s[j] * s[g] * sigma[jg]}
where \eqn{\sigma}{sigma} is the the appropriate element in the
variance-covariance matrix (see \code{\link{COV}}).
\cr
If ordering is present, the statistic \eqn{Z} will be greater than the 
upper \eqn{\alpha}{alpha}-th
percentile of a standard normal distribution.
}
\note{
Regarding the Fleming-Harrington weights: 
\itemize{
 \item \eqn{p = q = 0} gives the log-rank test, i.e. \eqn{W=1}
 \item \eqn{p=1, q=0} gives a version of the Mann-Whitney-Wilcoxon test
  (tests if populations distributions are identical)
 \item \eqn{p=0, q>0} gives more weight to differences later on
 \item \eqn{p>0, q=0} gives more weight to differences early on
}
The example using \code{alloauto} data illustrates this.
Here the log-rank statistic
has a p-value of  around 0.5
as the late advantage of allogenic transplants
is offset by the high early mortality. However using
Fleming-Harrington weights of \eqn{p=0, q=0.5},
emphasising differences later in time, gives a p-value of 0.04.
 \cr
Stratified models (\code{stratTen}) are \emph{not} yet supported.
}
\examples{
## Two covariate groups
data("leukemia", package="survival")
f1 <- survfit(Surv(time, status) ~ x, data=leukemia)
comp(ten(f1))
## K&M 2nd ed. Example 7.2, Table 7.2, pp 209--210.
data("kidney", package="KMsurv")
t1 <- ten(Surv(time=time, event=delta) ~ type, data=kidney)
comp(t1, p=c(0, 1, 1, 0.5, 0.5), q=c(1, 0, 1, 0.5, 2))
## see the weights used
attributes(t1)$lrw
## supremum (Renyi) test; two-sided; two covariate groups
## K&M 2nd ed. Example 7.9, pp 223--226.
data("gastric", package="survMisc")
g1 <- ten(Surv(time, event) ~ group, data=gastric)
comp(g1)
## Three covariate groups
## K&M 2nd ed. Example 7.4, pp 212-214.
data("bmt", package="KMsurv")
b1 <- ten(Surv(time=t2, event=d3) ~ group, data=bmt)
comp(b1, p=c(1, 0, 1), q=c(0, 1, 1))
## Tests for trend
## K&M 2nd ed. Example 7.6, pp 217-218.
data("larynx", package="KMsurv")
l1 <- ten(Surv(time, delta) ~ stage, data=larynx)
comp(l1)
attr(l1, "tft")
### see effect of F-H test
data("alloauto", package="KMsurv")
a1 <- ten(Surv(time, delta) ~ type, data=alloauto)
comp(a1, p=c(0, 1), q=c(1, 1))

}
\references{
Gehan A.
A Generalized Wilcoxon Test for Comparing Arbitrarily
Singly-Censored Samples.
Biometrika 1965 Jun. 52(1/2):203--23.
\samp{http://www.jstor.org/stable/2333825} JSTOR

Tarone RE, Ware J 1977
On Distribution-Free Tests for Equality of Survival Distributions.
\emph{Biometrika};\bold{64}(1):156--60.
\samp{http://www.jstor.org/stable/2335790} JSTOR

Peto R, Peto J 1972
Asymptotically Efficient Rank Invariant Test Procedures.
\emph{J Royal Statistical Society} \bold{135}(2):186--207.
\samp{http://www.jstor.org/stable/2344317} JSTOR

Fleming TR, Harrington DP, O'Sullivan M 1987
Supremum Versions of the Log-Rank and Generalized Wilcoxon Statistics.
\emph{J  American Statistical Association} \bold{82}(397):312--20.
\samp{http://www.jstor.org/stable/2289169} JSTOR

Billingsly P 1999
\emph{Convergence of Probability Measures.}
New York: John Wiley & Sons.
\samp{http://dx.doi.org/10.1002/9780470316962} Wiley (paywall)
}