1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139
|
% Generated by roxygen2: do not edit by hand
% Please edit documentation in R/sf.R
\name{sf}
\alias{sf}
\alias{sf.default}
\alias{sf.ten}
\alias{sf.stratTen}
\alias{strat.Ten}
\alias{sf.numeric}
\title{\bold{s}urvival (or hazard) \bold{f}unction
based on \eqn{e} and \eqn{n}.}
\usage{
sf(x, ...)
\method{sf}{default}(x, ..., what = c("S", "H"), SCV = FALSE, times = NULL)
\method{sf}{ten}(x, ..., what = c("S", "H"), SCV = FALSE, times = NULL, reCalc = FALSE)
\method{sf}{stratTen}(x, ..., what = c("S", "H"), SCV = FALSE, times = NULL, reCalc = FALSE)
\method{sf}{numeric}(
x,
...,
n = NULL,
what = c("all", "S", "Sv", "H", "Hv"),
SCV = FALSE,
times = NULL
)
}
\arguments{
\item{x}{One of the following:
\describe{
\item{default}{A numeric vector of events status (assumed sorted by time).}
\item{numeric}{Vectors of events and numbers at risk (assumed sorted by time).}
\item{ten}{A \code{ten} object.}
\item{stratTen}{A \code{stratTen} object.}
}}
\item{...}{Additional arguments (not implemented).}
\item{what}{See return, below.}
\item{SCV}{Include the \bold{S}quared \bold{C}oefficient of
\bold{V}ariation, which is calcluated using
the mean \eqn{\bar{x}}{mean(x)} and
the variance \eqn{\sigma_x^2}{var(x)}:
\deqn{SCV_x = \frac{\sigma_x^2}{\bar{x}^2}}{
SCV[x] = var(x) / mean(x)^2}
This measure of \emph{dispersion} is also referred to as
the 'standardized variance' or the 'noise'.}
\item{times}{Times for which to calculate the function.
\cr
If \code{times=NULL} (the default), times are used for
which at least one event occurred in at least one covariate group.}
\item{reCalc}{Recalcuate the values?
\cr
If \code{reCalc=FALSE} (the default) and the \code{ten} object already has
the calculated values stored as an \code{attribute},
the value of the \code{attribute} is returned directly.}
\item{n}{Number at risk.}
}
\value{
A {data.table} which is stored as an attribute of
the \code{ten} object.
\cr
If \code{what="s"}, the \bold{s}urvival is returned, based on the
Kaplan-Meier or product-limit estimator.
This is \eqn{1} at \eqn{t=0} and thereafter is given by:
\deqn{\hat{S}(t) = \prod_{t \leq t_i} (1-\frac{e_i}{n_i} )}{
S[t] = prod (1 - e[t]) / n[t] }
If \code{what="sv"}, the \bold{s}urvival \bold{v}ariance is returned.
\cr
Greenwoods estimtor of the variance of the
Kaplan-Meier (product-limit) estimator is:
\deqn{Var[\hat{S}(t)] = [\hat{S}(t)]^2 \sum_{t_i \leq t}
\frac{e_i}{n_i (n_i - e_i)}}{
Var(S[t]) = S[t]^2 sum e[t] / (n[t] * (n[t] - e[t]))}
If \code{what="h"}, the \bold{h}azard is returned,
based on the the Nelson-Aalen estimator.
This has a value of \eqn{\hat{H}=0}{H=0} at \eqn{t=0}
and thereafter is given by:
\deqn{\hat{H}(t) = \sum_{t \leq t_i} \frac{e_i}{n_i}}{
H[t] = sum(e[t] / n[t])}
If \code{what="hv"}, the \bold{h}azard \bold{v}ariance is returned.
\cr
The variance of the Nelson-Aalen estimator is given by:
\deqn{Var[\hat{H}(t)] = \sum_{t_i \leq t} \frac{e_i}{n_i^2}}{
Var(H[t]) = sum(e / n^2)}
If \code{what="all"} (the default), \emph{all} of the above
are returned in a \code{data.table}, along with:
\cr
Survival, based on the Nelson-Aalen hazard estimator \eqn{H},
which is:
\deqn{\hat{S_{na}}=e^{H}}{
S[t] = exp(H[t])}
Hazard, based on the Kaplan-Meier survival estimator \eqn{S},
which is:
\deqn{\hat{H_{km}} = -\log{S}}{
H[t] = -log(S[t])}
}
\description{
\bold{s}urvival (or hazard) \bold{f}unction
based on \eqn{e} and \eqn{n}.
}
\examples{
data("kidney", package="KMsurv")
k1 <- ten(Surv(time=time, event=delta) ~ type, data=kidney)
sf(k1)
sf(k1, times=1:10, reCalc=TRUE)
k2 <- ten(with(kidney, Surv(time=time, event=delta)))
sf(k2)
## K&M. Table 4.1A, pg 93.
## 6MP patients
data("drug6mp", package="KMsurv")
d1 <- with(drug6mp, Surv(time=t2, event=relapse))
(d1 <- ten(d1))
sf(x=d1$e, n=d1$n, what="S")
data("pbc", package="survival")
t1 <- ten(Surv(time, status==2) ~ log(bili) + age + strata(edema), data=pbc)
sf(t1)
## K&M. Table 4.2, pg 94.
data("bmt", package="KMsurv")
b1 <- bmt[bmt$group==1, ] # ALL patients
t2 <- ten(Surv(time=b1$t2, event=b1$d3))
with(t2, sf(x=e, n=n, what="Hv"))
## K&M. Table 4.3, pg 97.
sf(x=t2$e, n=t2$n, what="all")
}
\keyword{survival}
|