File: clt.examp.Rd

package info (click to toggle)
r-cran-teachingdemos 2.13-1
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 1,168 kB
  • sloc: makefile: 2
file content (65 lines) | stat: -rw-r--r-- 2,598 bytes parent folder | download | duplicates (4)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
\name{clt.examp}
\alias{clt.examp}
%- Also NEED an '\alias' for EACH other topic documented here.
\title{Plot Examples of the Central Limit Theorem}
\description{
  Takes samples of size \code{n} from 4 different distributions and
  plots histograms of the means along with a normal curve with matching
  mean and standard deviation.  Creating the plots for different values
  of \code{n} demonstrates the Central Limit Theorem.
}
\usage{
clt.examp(n = 1, reps = 10000, nclass = 16, norm.param=list(mean=0,sd=1),
          gamma.param=list(shape=1, rate=1/3), unif.param=list(min=0,max=1),
          beta.param=list(shape1=0.35, shape2=0.25))
}
%- maybe also 'usage' for other objects documented here.
\arguments{
  \item{n}{size of the individual samples}
  \item{reps}{number of samples to take from each distribution}
  \item{nclass}{number of bars in the histograms}
  \item{norm.param}{List with parameters passed to \code{rnorm}}
  \item{gamma.param}{List with parameters passed to \code{rgamma}}
  \item{unif.param}{List with parameters passed to \code{runif}}
  \item{beta.param}{List with parameters passed to \code{rbeta}}
}
\details{
  The 4 distributions sampled from are a Normal with defaults mean 0 and
  standard deviation 1, a gamma with defaults shape 1 (exponential) and
  lambda 1/3 (mean = 3), a uniform
  distribution from 0 to 1 (default), and a beta distribution with
  default
  alpha 0.35 and beta 0.25 (U shaped left skewed).

  The \code{norm.param}, \code{gamma.param}, \code{unif.param}, and
  \code{beta.param} arguments can be used to change the parameters of
  the generating distributions.

  Running the function with \code{n}=1 will show the populations.  Run
  the function again with \code{n} at higher values to show that the
  sampling distribution of the uniform quickly becomes normal and the
  exponential and beta distributions eventually become normal (but much
  slower than the uniform).
}
\value{
  This function is run for its side effect of creating plots.  It
  returns NULL invisibly.
}
%\references{ ~put references to the literature/web site here ~ }
\author{Greg Snow \email{538280@gmail.com}}
%\note{ ~~further notes~~ }

% ~Make other sections like Warning with \section{Warning }{....} ~

\seealso{\code{\link{rnorm}}, \code{\link{rexp}}, \code{\link{runif}},
  \code{\link{rbeta}} }
\examples{
clt.examp()
clt.examp(5)
clt.examp(30)
clt.examp(50)

}
\keyword{ hplot }% at least one, from doc/KEYWORDS
\keyword{ distribution }% __ONLY ONE__ keyword per line
\keyword{ univar }