File: simfun.Rd

package info (click to toggle)
r-cran-teachingdemos 2.13-1
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 1,168 kB
  • sloc: makefile: 2
file content (243 lines) | stat: -rw-r--r-- 9,468 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
\name{simfun}
\alias{simfun}
%- Also NEED an '\alias' for EACH other topic documented here.
\title{
  Create a function to simulate data
}
\description{
This function is used to create a new function that will simulate data.
This could be used by a teacher to create homework or test conditions
that the students would then simulate data from (each student could have
their own unique data set) or this function could be used in simulations
for power or other values of interest. 
}
\usage{
simfun(expr, drop, ...)
}
%- maybe also 'usage' for other objects documented here.
\arguments{
  \item{expr}{
  This is an expression, usually just one or more statements, that will
  generate the simulated data. 
}
  \item{drop}{
A character vector of names of objects/columns that will be dropped from
the return value.  These are usually intermediate objects or parameter
values that you don't want carried into the final returned object. 
}
  \item{\dots}{
Additional named items that will be in the environment when \code{expr}
is evaluated. 
}
}
\details{
  This function creates another function to simulate data.  You supply
  the general ideas of the simulation to this function and the resulting
  function can then be used to create simulated datasets.  The resulting
  function can then be given to students for them to simulate datasets,
  or used localy as part of larger simulations. 
  
  The environment where the expression is evaluated will have all the
  columns or elements of the \code{data} argument available as well as
  the \code{data} argument itself.  Any variables/parameters passed
  through \code{...} in the original function will also be available.
  You then supply the code based on those variables to create the
  simulated data.  The names of any columns or parameters submitted as
  part of \code{data} will need to match the code exactly (provide
  specific directions to the users on what columns need to be named).
  Rember that indexing using factors indexes based on the underlying
  integers not the character representation.  See the examples for
  details. 
  
  The resulting function can be saved and loaded/attached in different R
  sessions (it is important to use \code{save} rather than something
  like \code{dput} so that the environment of the function is
  preserved). 
  
  The function includes an optional seed that will be used with the
  \code{\link{char2seed}} function (if the seed is a character) so that
  each student could use a unique but identifiable seed (such as their
  name or something based on their name) so that each student will use a
  different dataset, but the instructor will be able to generate the
  exact same dataset to check answers. 
  
  The "True" parameters are hidden in the environment of the function so
  the student will not see the "true" values by simply printing the
  function.  However an intermediate level R programmer/user would be
  able to extract the simulation parameters (but the correct homework or
  test answer will not be the simulation parameters). 
}
\value{
The return value is a function that will generate simulated datasets.
  The function will have 2 arguments, \code{data} and \code{seed}.  The
  \code{data} argument can be either a data frame of the predictor
  variables (study design) or a list of simulation parameters.  The
  \code{seed} argument will be passed on to \code{\link{set.seed}} if it
  is numeric and \code{\link{char2seed}} if it is a character. 

The return value of this function is a dataframe with the simulated data
and any explanitory variables passed to the function. 

See the examples for how to use the result function.
}
\author{Greg Snow, \email{538280@gmail.com}}
\note{
  This function was not designed for speed, if you are doing long
  simulations then hand crafting the simulation function will probably
  run quicker than one created using this function. 
  
  Like the prediction functions the data frame passed in as the data
  argument will need to have exact names of the columns to match with
  the code (including capitolization). 
  
  This function is different from the \code{\link{simulate}} functions
  in that it allows for different sample sizes, user specified
  parameters, and different predictor variables. 
}

%% ~Make other sections like Warning with \section{Warning }{....} ~

\seealso{
\code{\link{set.seed}}, \code{\link{char2seed}}, \code{\link{within}}, \code{\link{simulate}}, \code{\link{save}}, \code{\link{load}}, \code{\link{attach}}
}
\examples{
# Create a function to simulate heights for a given dataset

simheight <- simfun( {h <- c(64,69); height<-h[sex]+ rnorm(10,0,3)}, drop='h' )

my.df <- data.frame(sex=factor(rep(c('Male','Female'),each=5)))
simdat <- simheight(my.df)
t.test(height~sex, data=simdat)

# a more general version, and have the expression predefined
# (note that this assumes that the levels are Female, Male in that order)

myexpr <- quote({
  n <- length(sex)
  h <- c(64,69)
  height <- h[sex] + rnorm(n,0,3)
})

simheight <- simfun(eval(myexpr), drop=c('n','h'))
my.df <- data.frame(sex=factor(sample(rep(c('Male','Female'),c(5,10)))))
(simdat <- simheight(my.df))

# similar to above, but use named parameter vector and index by names

myexpr <- quote({
  n <- length(sex)
  height <- h[ as.character(sex)] + rnorm(n,0,sig)
})

simheight <- simfun(eval(myexpr), drop=c('n','h','sig'), 
  h=c(Male=69,Female=64), sig=3)
my.df <- data.frame(sex=factor(sample(c('Male','Female'),100, replace=TRUE)))
(simdat <- simheight(my.df, seed='example'))

# Create a function to simulate Sex and Height for a given sample size 
# (actually it will generate n males and n females for a total of 2*n samples)
# then use it in a set of simulations
simheight <- simfun( {sex <- factor(rep(c('Male','Female'),each=n))
                      height <- h[sex] + rnorm(2*n,0,s)
                      }, drop=c('h','n'), h=c(64,69), s=3)
(simdat <- simheight(list(n=10)))

out5  <- replicate(1000, t.test(height~sex, data=simheight(list(n= 5)))$p.value)
out15 <- replicate(1000, t.test(height~sex, data=simheight(list(n=15)))$p.value)

mean(out5  <= 0.05)
mean(out15 <= 0.05)

# use a fixed population

simstate <- simfun({
  tmp <- state.df[as.character(State),]
  Population <- tmp[['Population']]
  Income <- tmp[['Income']]
  Illiteracy <- tmp[['Illiteracy']]
}, state.df=as.data.frame(state.x77), drop=c('tmp','state.df'))
simstate(data.frame(State=sample(state.name,10)))

# Use simulation, but override setting the seed

simheight <- simfun({
  set.seed(1234)
  h <- c(64,69)
  sex <- factor(rep(c('Female','Male'),each=50))
  height <- round(rnorm(100, rep(h,each=50),3),1)
  sex <- sex[ID]
  height <- height[ID]
}, drop='h')
(newdat <- simheight(list(ID=c(1:5,51:55))))
(newdat2<- simheight(list(ID=1:10)))

# Using a fitted object

fit <- lm(Fertility ~ . , data=swiss)
simfert <- simfun({
  Fertility <- predict(fit, newdata=data)
  Fertility <- Fertility + rnorm(length(Fertility),0,summary(fit)$sigma)
}, drop=c('fit'), fit=fit)

tmpdat <- as.data.frame(lapply(swiss[,-1], 
            function(x) round(runif(100, min(x), max(x)))))
names(tmpdat) <- names(swiss)[-1]
fertdat <- simfert(tmpdat)
head(fertdat)
rbind(coef(fit), coef(lm(Fertility~., data=fertdat)))

# simulate a nested mixed effects model
simheight <- simfun({
  n.city <- length(unique(city))
  n.state <- length(unique(state))
  n <- length(city)
  height <- h[sex] + rnorm(n.state,0,sig.state)[state] + 
    rnorm(n.city,0,sig.city)[city] + rnorm(n,0,sig.e)
}, sig.state=1, sig.city=0.5, sig.e=3, h=c(64,69),
  drop=c('sig.state','sig.city','sig.e','h','n.city','n.state','n'))

tmpdat <- data.frame(state=gl(5,20), city=gl(10,10), 
  sex=gl(2,5,length=100, labels=c('F','M')))
heightdat <- simheight(tmpdat)

# similar to above, but include cost information, this assumes that 
# each new state costs $100, each new city is $10, and each subject is $1
# this shows 2 possible methods

simheight <- simfun({
  n.city <- length(unique(city))
  n.state <- length(unique(state))
  n <- length(city)
  height <- h[sex] + rnorm(n.state,0,sig.state)[state] + 
    rnorm(n.city,0,sig.city)[city] + rnorm(n,0,sig.e)
  cost <- 100 * (!duplicated(state)) + 10*(!duplicated(city)) + 1
  cat('The total cost for this design is $', 100*n.state+10*n.city+1*n, 
  '\n', sep='')
}, sig.state=1, sig.city=0.5, sig.e=3, h=c(64,69),
  drop=c('sig.state','sig.city','sig.e','h','n.city','n.state','n'))

tmpdat <- data.frame(state=gl(5,20), city=gl(10,10), 
  sex=gl(2,5,length=100, labels=c('F','M')))
heightdat <- simheight(tmpdat)
sum(heightdat$cost)


# another mixed model method

simheight <- simfun({
  state <- gl(n.state, n/n.state)
  city <- gl(n.city*n.state, n/n.city/n.state)
  sex <- gl(2, n.city, length=n, labels=c('F','M') )
  height <- h[sex] + rnorm(n.state,0,sig.state)[state] + 
    rnorm(n.city*n.state,0,sig.city)[city] + rnorm(n,0,sig.e)
}, drop=c('n.state','n.city','n','sig.city','sig.state','sig.e','h'))

heightdat <- simheight( list(
  n.state=5, n.city=2, n=100, sig.state=10, sig.city=3, sig.e=1, h=c(64,69)
))

}
% Add one or more standard keywords, see file 'KEYWORDS' in the
% R documentation directory.
\keyword{ datagen }
\keyword{ design }