File: snapshotting.html

package info (click to toggle)
r-cran-testthat 3.2.3-1
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 3,452 kB
  • sloc: cpp: 9,261; ansic: 37; sh: 14; makefile: 5
file content (714 lines) | stat: -rw-r--r-- 252,130 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
<!DOCTYPE html>

<html>

<head>

<meta charset="utf-8" />
<meta name="generator" content="pandoc" />
<meta http-equiv="X-UA-Compatible" content="IE=EDGE" />

<meta name="viewport" content="width=device-width, initial-scale=1" />



<title>Snapshot tests</title>

<script>// Pandoc 2.9 adds attributes on both header and div. We remove the former (to
// be compatible with the behavior of Pandoc < 2.8).
document.addEventListener('DOMContentLoaded', function(e) {
  var hs = document.querySelectorAll("div.section[class*='level'] > :first-child");
  var i, h, a;
  for (i = 0; i < hs.length; i++) {
    h = hs[i];
    if (!/^h[1-6]$/i.test(h.tagName)) continue;  // it should be a header h1-h6
    a = h.attributes;
    while (a.length > 0) h.removeAttribute(a[0].name);
  }
});
</script>

<style type="text/css">
code{white-space: pre-wrap;}
span.smallcaps{font-variant: small-caps;}
span.underline{text-decoration: underline;}
div.column{display: inline-block; vertical-align: top; width: 50%;}
div.hanging-indent{margin-left: 1.5em; text-indent: -1.5em;}
ul.task-list{list-style: none;}
</style>



<style type="text/css">
code {
white-space: pre;
}
.sourceCode {
overflow: visible;
}
</style>
<style type="text/css" data-origin="pandoc">
pre > code.sourceCode { white-space: pre; position: relative; }
pre > code.sourceCode > span { line-height: 1.25; }
pre > code.sourceCode > span:empty { height: 1.2em; }
.sourceCode { overflow: visible; }
code.sourceCode > span { color: inherit; text-decoration: inherit; }
div.sourceCode { margin: 1em 0; }
pre.sourceCode { margin: 0; }
@media screen {
div.sourceCode { overflow: auto; }
}
@media print {
pre > code.sourceCode { white-space: pre-wrap; }
pre > code.sourceCode > span { display: inline-block; text-indent: -5em; padding-left: 5em; }
}
pre.numberSource code
{ counter-reset: source-line 0; }
pre.numberSource code > span
{ position: relative; left: -4em; counter-increment: source-line; }
pre.numberSource code > span > a:first-child::before
{ content: counter(source-line);
position: relative; left: -1em; text-align: right; vertical-align: baseline;
border: none; display: inline-block;
-webkit-touch-callout: none; -webkit-user-select: none;
-khtml-user-select: none; -moz-user-select: none;
-ms-user-select: none; user-select: none;
padding: 0 4px; width: 4em;
color: #aaaaaa;
}
pre.numberSource { margin-left: 3em; border-left: 1px solid #aaaaaa; padding-left: 4px; }
div.sourceCode
{ }
@media screen {
pre > code.sourceCode > span > a:first-child::before { text-decoration: underline; }
}
code span.al { color: #ff0000; font-weight: bold; } 
code span.an { color: #60a0b0; font-weight: bold; font-style: italic; } 
code span.at { color: #7d9029; } 
code span.bn { color: #40a070; } 
code span.bu { color: #008000; } 
code span.cf { color: #007020; font-weight: bold; } 
code span.ch { color: #4070a0; } 
code span.cn { color: #880000; } 
code span.co { color: #60a0b0; font-style: italic; } 
code span.cv { color: #60a0b0; font-weight: bold; font-style: italic; } 
code span.do { color: #ba2121; font-style: italic; } 
code span.dt { color: #902000; } 
code span.dv { color: #40a070; } 
code span.er { color: #ff0000; font-weight: bold; } 
code span.ex { } 
code span.fl { color: #40a070; } 
code span.fu { color: #06287e; } 
code span.im { color: #008000; font-weight: bold; } 
code span.in { color: #60a0b0; font-weight: bold; font-style: italic; } 
code span.kw { color: #007020; font-weight: bold; } 
code span.op { color: #666666; } 
code span.ot { color: #007020; } 
code span.pp { color: #bc7a00; } 
code span.sc { color: #4070a0; } 
code span.ss { color: #bb6688; } 
code span.st { color: #4070a0; } 
code span.va { color: #19177c; } 
code span.vs { color: #4070a0; } 
code span.wa { color: #60a0b0; font-weight: bold; font-style: italic; } 
</style>
<script>
// apply pandoc div.sourceCode style to pre.sourceCode instead
(function() {
  var sheets = document.styleSheets;
  for (var i = 0; i < sheets.length; i++) {
    if (sheets[i].ownerNode.dataset["origin"] !== "pandoc") continue;
    try { var rules = sheets[i].cssRules; } catch (e) { continue; }
    var j = 0;
    while (j < rules.length) {
      var rule = rules[j];
      // check if there is a div.sourceCode rule
      if (rule.type !== rule.STYLE_RULE || rule.selectorText !== "div.sourceCode") {
        j++;
        continue;
      }
      var style = rule.style.cssText;
      // check if color or background-color is set
      if (rule.style.color === '' && rule.style.backgroundColor === '') {
        j++;
        continue;
      }
      // replace div.sourceCode by a pre.sourceCode rule
      sheets[i].deleteRule(j);
      sheets[i].insertRule('pre.sourceCode{' + style + '}', j);
    }
  }
})();
</script>




<style type="text/css">body {
background-color: #fff;
margin: 1em auto;
max-width: 700px;
overflow: visible;
padding-left: 2em;
padding-right: 2em;
font-family: "Open Sans", "Helvetica Neue", Helvetica, Arial, sans-serif;
font-size: 14px;
line-height: 1.35;
}
#TOC {
clear: both;
margin: 0 0 10px 10px;
padding: 4px;
width: 400px;
border: 1px solid #CCCCCC;
border-radius: 5px;
background-color: #f6f6f6;
font-size: 13px;
line-height: 1.3;
}
#TOC .toctitle {
font-weight: bold;
font-size: 15px;
margin-left: 5px;
}
#TOC ul {
padding-left: 40px;
margin-left: -1.5em;
margin-top: 5px;
margin-bottom: 5px;
}
#TOC ul ul {
margin-left: -2em;
}
#TOC li {
line-height: 16px;
}
table {
margin: 1em auto;
border-width: 1px;
border-color: #DDDDDD;
border-style: outset;
border-collapse: collapse;
}
table th {
border-width: 2px;
padding: 5px;
border-style: inset;
}
table td {
border-width: 1px;
border-style: inset;
line-height: 18px;
padding: 5px 5px;
}
table, table th, table td {
border-left-style: none;
border-right-style: none;
}
table thead, table tr.even {
background-color: #f7f7f7;
}
p {
margin: 0.5em 0;
}
blockquote {
background-color: #f6f6f6;
padding: 0.25em 0.75em;
}
hr {
border-style: solid;
border: none;
border-top: 1px solid #777;
margin: 28px 0;
}
dl {
margin-left: 0;
}
dl dd {
margin-bottom: 13px;
margin-left: 13px;
}
dl dt {
font-weight: bold;
}
ul {
margin-top: 0;
}
ul li {
list-style: circle outside;
}
ul ul {
margin-bottom: 0;
}
pre, code {
background-color: #f7f7f7;
border-radius: 3px;
color: #333;
white-space: pre-wrap; 
}
pre {
border-radius: 3px;
margin: 5px 0px 10px 0px;
padding: 10px;
}
pre:not([class]) {
background-color: #f7f7f7;
}
code {
font-family: Consolas, Monaco, 'Courier New', monospace;
font-size: 85%;
}
p > code, li > code {
padding: 2px 0px;
}
div.figure {
text-align: center;
}
img {
background-color: #FFFFFF;
padding: 2px;
border: 1px solid #DDDDDD;
border-radius: 3px;
border: 1px solid #CCCCCC;
margin: 0 5px;
}
h1 {
margin-top: 0;
font-size: 35px;
line-height: 40px;
}
h2 {
border-bottom: 4px solid #f7f7f7;
padding-top: 10px;
padding-bottom: 2px;
font-size: 145%;
}
h3 {
border-bottom: 2px solid #f7f7f7;
padding-top: 10px;
font-size: 120%;
}
h4 {
border-bottom: 1px solid #f7f7f7;
margin-left: 8px;
font-size: 105%;
}
h5, h6 {
border-bottom: 1px solid #ccc;
font-size: 105%;
}
a {
color: #0033dd;
text-decoration: none;
}
a:hover {
color: #6666ff; }
a:visited {
color: #800080; }
a:visited:hover {
color: #BB00BB; }
a[href^="http:"] {
text-decoration: underline; }
a[href^="https:"] {
text-decoration: underline; }

code > span.kw { color: #555; font-weight: bold; } 
code > span.dt { color: #902000; } 
code > span.dv { color: #40a070; } 
code > span.bn { color: #d14; } 
code > span.fl { color: #d14; } 
code > span.ch { color: #d14; } 
code > span.st { color: #d14; } 
code > span.co { color: #888888; font-style: italic; } 
code > span.ot { color: #007020; } 
code > span.al { color: #ff0000; font-weight: bold; } 
code > span.fu { color: #900; font-weight: bold; } 
code > span.er { color: #a61717; background-color: #e3d2d2; } 
</style>




</head>

<body>




<h1 class="title toc-ignore">Snapshot tests</h1>



<p>The goal of a unit test is to record the expected output of a
function using code. This is a powerful technique because not only does
it ensure that code doesn’t change unexpectedly, it also expresses the
desired behaviour in a way that a human can understand.</p>
<p>However, it’s not always convenient to record the expected behaviour
with code. Some challenges include:</p>
<ul>
<li><p>Text output that includes many characters like quotes and
newlines that require special handling in a string.</p></li>
<li><p>Output that is large, making it painful to define the reference
output, and bloating the size of the test file and making it hard to
navigate.</p></li>
<li><p>Binary formats like plots or images, which are very difficult to
describe in code: i.e. the plot looks right, the error message is useful
to a human, the print method uses colour effectively.</p></li>
</ul>
<p>For these situations, testthat provides an alternative mechanism:
snapshot tests. Instead of using code to describe expected output,
snapshot tests (also known as <a href="https://ro-che.info/articles/2017-12-04-golden-tests">golden
tests</a>) record results in a separate human readable file. Snapshot
tests in testthat are inspired primarily by <a href="https://jestjs.io/docs/en/snapshot-testing">Jest</a>, thanks to a
number of very useful discussions with Joe Cheng.</p>
<div class="sourceCode" id="cb1"><pre class="sourceCode r"><code class="sourceCode r"><span id="cb1-1"><a href="#cb1-1" tabindex="-1"></a><span class="fu">library</span>(testthat)</span></code></pre></div>
<div id="basic-workflow" class="section level2">
<h2>Basic workflow</h2>
<p>We’ll illustrate the basic workflow with a simple function that
generates an HTML heading. It can optionally include an <code>id</code>
attribute, which allows you to construct a link directly to that
heading.</p>
<div class="sourceCode" id="cb2"><pre class="sourceCode r"><code class="sourceCode r"><span id="cb2-1"><a href="#cb2-1" tabindex="-1"></a>bullets <span class="ot">&lt;-</span> <span class="cf">function</span>(text, <span class="at">id =</span> <span class="cn">NULL</span>) {</span>
<span id="cb2-2"><a href="#cb2-2" tabindex="-1"></a>  <span class="fu">paste0</span>(</span>
<span id="cb2-3"><a href="#cb2-3" tabindex="-1"></a>    <span class="st">&quot;&lt;ul&quot;</span>, <span class="cf">if</span> (<span class="sc">!</span><span class="fu">is.null</span>(id)) <span class="fu">paste0</span>(<span class="st">&quot; id=</span><span class="sc">\&quot;</span><span class="st">&quot;</span>, id, <span class="st">&quot;</span><span class="sc">\&quot;</span><span class="st">&quot;</span>), <span class="st">&quot;&gt;</span><span class="sc">\n</span><span class="st">&quot;</span>, </span>
<span id="cb2-4"><a href="#cb2-4" tabindex="-1"></a>    <span class="fu">paste0</span>(<span class="st">&quot;  &lt;li&gt;&quot;</span>, text, <span class="st">&quot;&lt;/li&gt;</span><span class="sc">\n</span><span class="st">&quot;</span>, <span class="at">collapse =</span> <span class="st">&quot;&quot;</span>),</span>
<span id="cb2-5"><a href="#cb2-5" tabindex="-1"></a>    <span class="st">&quot;&lt;/ul&gt;</span><span class="sc">\n</span><span class="st">&quot;</span></span>
<span id="cb2-6"><a href="#cb2-6" tabindex="-1"></a>  )</span>
<span id="cb2-7"><a href="#cb2-7" tabindex="-1"></a>}</span>
<span id="cb2-8"><a href="#cb2-8" tabindex="-1"></a><span class="fu">cat</span>(<span class="fu">bullets</span>(<span class="st">&quot;a&quot;</span>, <span class="at">id =</span> <span class="st">&quot;x&quot;</span>))</span>
<span id="cb2-9"><a href="#cb2-9" tabindex="-1"></a><span class="co">#&gt; &lt;ul id=&quot;x&quot;&gt;</span></span>
<span id="cb2-10"><a href="#cb2-10" tabindex="-1"></a><span class="co">#&gt;   &lt;li&gt;a&lt;/li&gt;</span></span>
<span id="cb2-11"><a href="#cb2-11" tabindex="-1"></a><span class="co">#&gt; &lt;/ul&gt;</span></span></code></pre></div>
<p>Testing this simple function is relatively painful. To write the test
you have to carefully escape the newlines and quotes. And then when you
re-read the test in the future, all that escaping makes it hard to tell
exactly what it’s supposed to return.</p>
<div class="sourceCode" id="cb3"><pre class="sourceCode r"><code class="sourceCode r"><span id="cb3-1"><a href="#cb3-1" tabindex="-1"></a><span class="fu">test_that</span>(<span class="st">&quot;bullets&quot;</span>, {</span>
<span id="cb3-2"><a href="#cb3-2" tabindex="-1"></a>  <span class="fu">expect_equal</span>(<span class="fu">bullets</span>(<span class="st">&quot;a&quot;</span>), <span class="st">&quot;&lt;ul&gt;</span><span class="sc">\n</span><span class="st">  &lt;li&gt;a&lt;/li&gt;</span><span class="sc">\n</span><span class="st">&lt;/ul&gt;</span><span class="sc">\n</span><span class="st">&quot;</span>)</span>
<span id="cb3-3"><a href="#cb3-3" tabindex="-1"></a>  <span class="fu">expect_equal</span>(<span class="fu">bullets</span>(<span class="st">&quot;a&quot;</span>, <span class="at">id =</span> <span class="st">&quot;x&quot;</span>), <span class="st">&quot;&lt;ul id=</span><span class="sc">\&quot;</span><span class="st">x</span><span class="sc">\&quot;</span><span class="st">&gt;</span><span class="sc">\n</span><span class="st">  &lt;li&gt;a&lt;/li&gt;</span><span class="sc">\n</span><span class="st">&lt;/ul&gt;</span><span class="sc">\n</span><span class="st">&quot;</span>)</span>
<span id="cb3-4"><a href="#cb3-4" tabindex="-1"></a>})</span>
<span id="cb3-5"><a href="#cb3-5" tabindex="-1"></a><span class="co">#&gt; Test passed 🥇</span></span></code></pre></div>
<p>This is a great place to use snapshot testing. To do this we make two
changes to our code:</p>
<ul>
<li><p>We use <code>expect_snapshot()</code> instead of
<code>expect_equal()</code></p></li>
<li><p>We wrap the call in <code>cat()</code> (to avoid <code>[1]</code>
in the output, like in my first interactive example).</p></li>
</ul>
<p>This yields the following test:</p>
<div class="sourceCode" id="cb4"><pre class="sourceCode r"><code class="sourceCode r"><span id="cb4-1"><a href="#cb4-1" tabindex="-1"></a><span class="fu">test_that</span>(<span class="st">&quot;bullets&quot;</span>, {</span>
<span id="cb4-2"><a href="#cb4-2" tabindex="-1"></a>  <span class="fu">expect_snapshot</span>(<span class="fu">cat</span>(<span class="fu">bullets</span>(<span class="st">&quot;a&quot;</span>)))</span>
<span id="cb4-3"><a href="#cb4-3" tabindex="-1"></a>  <span class="fu">expect_snapshot</span>(<span class="fu">cat</span>(<span class="fu">bullets</span>(<span class="st">&quot;a&quot;</span>, <span class="st">&quot;b&quot;</span>)))</span>
<span id="cb4-4"><a href="#cb4-4" tabindex="-1"></a>})</span>
<span id="cb4-5"><a href="#cb4-5" tabindex="-1"></a><span class="co">#&gt; ── Warning: bullets ────────────────────────────────────────────────────────────</span></span>
<span id="cb4-6"><a href="#cb4-6" tabindex="-1"></a><span class="co">#&gt; Adding new snapshot:</span></span>
<span id="cb4-7"><a href="#cb4-7" tabindex="-1"></a><span class="co">#&gt; Code</span></span>
<span id="cb4-8"><a href="#cb4-8" tabindex="-1"></a><span class="co">#&gt;   cat(bullets(&quot;a&quot;))</span></span>
<span id="cb4-9"><a href="#cb4-9" tabindex="-1"></a><span class="co">#&gt; Output</span></span>
<span id="cb4-10"><a href="#cb4-10" tabindex="-1"></a><span class="co">#&gt;   &lt;ul&gt;</span></span>
<span id="cb4-11"><a href="#cb4-11" tabindex="-1"></a><span class="co">#&gt;     &lt;li&gt;a&lt;/li&gt;</span></span>
<span id="cb4-12"><a href="#cb4-12" tabindex="-1"></a><span class="co">#&gt;   &lt;/ul&gt;</span></span>
<span id="cb4-13"><a href="#cb4-13" tabindex="-1"></a><span class="co">#&gt; </span></span>
<span id="cb4-14"><a href="#cb4-14" tabindex="-1"></a><span class="co">#&gt; ── Warning: bullets ────────────────────────────────────────────────────────────</span></span>
<span id="cb4-15"><a href="#cb4-15" tabindex="-1"></a><span class="co">#&gt; Adding new snapshot:</span></span>
<span id="cb4-16"><a href="#cb4-16" tabindex="-1"></a><span class="co">#&gt; Code</span></span>
<span id="cb4-17"><a href="#cb4-17" tabindex="-1"></a><span class="co">#&gt;   cat(bullets(&quot;a&quot;, &quot;b&quot;))</span></span>
<span id="cb4-18"><a href="#cb4-18" tabindex="-1"></a><span class="co">#&gt; Output</span></span>
<span id="cb4-19"><a href="#cb4-19" tabindex="-1"></a><span class="co">#&gt;   &lt;ul id=&quot;b&quot;&gt;</span></span>
<span id="cb4-20"><a href="#cb4-20" tabindex="-1"></a><span class="co">#&gt;     &lt;li&gt;a&lt;/li&gt;</span></span>
<span id="cb4-21"><a href="#cb4-21" tabindex="-1"></a><span class="co">#&gt;   &lt;/ul&gt;</span></span></code></pre></div>
<p>When we run the test for the first time, it automatically generates
reference output, and prints it, so that you can visually confirm that
it’s correct. The output is automatically saved in
<code>_snaps/{name}.md</code>. The name of the snapshot matches your
test file name — e.g. if your test is <code>test-pizza.R</code> then
your snapshot will be saved in
<code>test/testthat/_snaps/pizza.md</code>. As the file name suggests,
this is a markdown file, which I’ll explain shortly.</p>
<p>If you run the test again, it’ll succeed:</p>
<div class="sourceCode" id="cb5"><pre class="sourceCode r"><code class="sourceCode r"><span id="cb5-1"><a href="#cb5-1" tabindex="-1"></a><span class="fu">test_that</span>(<span class="st">&quot;bullets&quot;</span>, {</span>
<span id="cb5-2"><a href="#cb5-2" tabindex="-1"></a>  <span class="fu">expect_snapshot</span>(<span class="fu">cat</span>(<span class="fu">bullets</span>(<span class="st">&quot;a&quot;</span>)))</span>
<span id="cb5-3"><a href="#cb5-3" tabindex="-1"></a>  <span class="fu">expect_snapshot</span>(<span class="fu">cat</span>(<span class="fu">bullets</span>(<span class="st">&quot;a&quot;</span>, <span class="st">&quot;b&quot;</span>)))</span>
<span id="cb5-4"><a href="#cb5-4" tabindex="-1"></a>})</span>
<span id="cb5-5"><a href="#cb5-5" tabindex="-1"></a><span class="co">#&gt; Test passed 🎊</span></span></code></pre></div>
<p>But if you change the underlying code, say to tweak the indenting,
the test will fail:</p>
<div class="sourceCode" id="cb6"><pre class="sourceCode r"><code class="sourceCode r"><span id="cb6-1"><a href="#cb6-1" tabindex="-1"></a>bullets <span class="ot">&lt;-</span> <span class="cf">function</span>(text, <span class="at">id =</span> <span class="cn">NULL</span>) {</span>
<span id="cb6-2"><a href="#cb6-2" tabindex="-1"></a>  <span class="fu">paste0</span>(</span>
<span id="cb6-3"><a href="#cb6-3" tabindex="-1"></a>    <span class="st">&quot;&lt;ul&quot;</span>, <span class="cf">if</span> (<span class="sc">!</span><span class="fu">is.null</span>(id)) <span class="fu">paste0</span>(<span class="st">&quot; id=</span><span class="sc">\&quot;</span><span class="st">&quot;</span>, id, <span class="st">&quot;</span><span class="sc">\&quot;</span><span class="st">&quot;</span>), <span class="st">&quot;&gt;</span><span class="sc">\n</span><span class="st">&quot;</span>, </span>
<span id="cb6-4"><a href="#cb6-4" tabindex="-1"></a>    <span class="fu">paste0</span>(<span class="st">&quot;&lt;li&gt;&quot;</span>, text, <span class="st">&quot;&lt;/li&gt;</span><span class="sc">\n</span><span class="st">&quot;</span>, <span class="at">collapse =</span> <span class="st">&quot;&quot;</span>),</span>
<span id="cb6-5"><a href="#cb6-5" tabindex="-1"></a>    <span class="st">&quot;&lt;/ul&gt;</span><span class="sc">\n</span><span class="st">&quot;</span></span>
<span id="cb6-6"><a href="#cb6-6" tabindex="-1"></a>  )</span>
<span id="cb6-7"><a href="#cb6-7" tabindex="-1"></a>}</span>
<span id="cb6-8"><a href="#cb6-8" tabindex="-1"></a><span class="fu">test_that</span>(<span class="st">&quot;bullets&quot;</span>, {</span>
<span id="cb6-9"><a href="#cb6-9" tabindex="-1"></a>  <span class="fu">expect_snapshot</span>(<span class="fu">cat</span>(<span class="fu">bullets</span>(<span class="st">&quot;a&quot;</span>)))</span>
<span id="cb6-10"><a href="#cb6-10" tabindex="-1"></a>  <span class="fu">expect_snapshot</span>(<span class="fu">cat</span>(<span class="fu">bullets</span>(<span class="st">&quot;a&quot;</span>, <span class="st">&quot;b&quot;</span>)))</span>
<span id="cb6-11"><a href="#cb6-11" tabindex="-1"></a>})</span>
<span id="cb6-12"><a href="#cb6-12" tabindex="-1"></a><span class="co">#&gt; ── Failure: bullets ────────────────────────────────────────────────────────────</span></span>
<span id="cb6-13"><a href="#cb6-13" tabindex="-1"></a><span class="co">#&gt; Snapshot of code has changed:</span></span>
<span id="cb6-14"><a href="#cb6-14" tabindex="-1"></a><span class="co">#&gt;     old                 | new                    </span></span>
<span id="cb6-15"><a href="#cb6-15" tabindex="-1"></a><span class="co">#&gt; [2]   cat(bullets(&quot;a&quot;)) |   cat(bullets(&quot;a&quot;)) [2]</span></span>
<span id="cb6-16"><a href="#cb6-16" tabindex="-1"></a><span class="co">#&gt; [3] Output              | Output              [3]</span></span>
<span id="cb6-17"><a href="#cb6-17" tabindex="-1"></a><span class="co">#&gt; [4]   &lt;ul&gt;              |   &lt;ul&gt;              [4]</span></span>
<span id="cb6-18"><a href="#cb6-18" tabindex="-1"></a><span class="co">#&gt; [5]     &lt;li&gt;a&lt;/li&gt;      -   &lt;li&gt;a&lt;/li&gt;        [5]</span></span>
<span id="cb6-19"><a href="#cb6-19" tabindex="-1"></a><span class="co">#&gt; [6]   &lt;/ul&gt;             |   &lt;/ul&gt;             [6]</span></span>
<span id="cb6-20"><a href="#cb6-20" tabindex="-1"></a><span class="co">#&gt; </span></span>
<span id="cb6-21"><a href="#cb6-21" tabindex="-1"></a><span class="co">#&gt; * Run `testthat::snapshot_accept(&#39;snapshotting.Rmd&#39;)` to accept the change.</span></span>
<span id="cb6-22"><a href="#cb6-22" tabindex="-1"></a><span class="co">#&gt; * Run `testthat::snapshot_review(&#39;snapshotting.Rmd&#39;)` to interactively review the change.</span></span>
<span id="cb6-23"><a href="#cb6-23" tabindex="-1"></a><span class="co">#&gt; </span></span>
<span id="cb6-24"><a href="#cb6-24" tabindex="-1"></a><span class="co">#&gt; ── Failure: bullets ────────────────────────────────────────────────────────────</span></span>
<span id="cb6-25"><a href="#cb6-25" tabindex="-1"></a><span class="co">#&gt; Snapshot of code has changed:</span></span>
<span id="cb6-26"><a href="#cb6-26" tabindex="-1"></a><span class="co">#&gt;     old                      | new                         </span></span>
<span id="cb6-27"><a href="#cb6-27" tabindex="-1"></a><span class="co">#&gt; [2]   cat(bullets(&quot;a&quot;, &quot;b&quot;)) |   cat(bullets(&quot;a&quot;, &quot;b&quot;)) [2]</span></span>
<span id="cb6-28"><a href="#cb6-28" tabindex="-1"></a><span class="co">#&gt; [3] Output                   | Output                   [3]</span></span>
<span id="cb6-29"><a href="#cb6-29" tabindex="-1"></a><span class="co">#&gt; [4]   &lt;ul id=&quot;b&quot;&gt;            |   &lt;ul id=&quot;b&quot;&gt;            [4]</span></span>
<span id="cb6-30"><a href="#cb6-30" tabindex="-1"></a><span class="co">#&gt; [5]     &lt;li&gt;a&lt;/li&gt;           -   &lt;li&gt;a&lt;/li&gt;             [5]</span></span>
<span id="cb6-31"><a href="#cb6-31" tabindex="-1"></a><span class="co">#&gt; [6]   &lt;/ul&gt;                  |   &lt;/ul&gt;                  [6]</span></span>
<span id="cb6-32"><a href="#cb6-32" tabindex="-1"></a><span class="co">#&gt; </span></span>
<span id="cb6-33"><a href="#cb6-33" tabindex="-1"></a><span class="co">#&gt; * Run `testthat::snapshot_accept(&#39;snapshotting.Rmd&#39;)` to accept the change.</span></span>
<span id="cb6-34"><a href="#cb6-34" tabindex="-1"></a><span class="co">#&gt; * Run `testthat::snapshot_review(&#39;snapshotting.Rmd&#39;)` to interactively review the change.</span></span>
<span id="cb6-35"><a href="#cb6-35" tabindex="-1"></a><span class="co">#&gt; Error:</span></span>
<span id="cb6-36"><a href="#cb6-36" tabindex="-1"></a><span class="co">#&gt; ! Test failed</span></span></code></pre></div>
<p>If this is a deliberate change, you can follow the advice in the
message and update the snapshots for that file by running
<code>snapshot_accept(&quot;pizza&quot;)</code>; otherwise you can fix the bug and
your tests will pass once more. (You can also accept snapshot for all
files with <code>snapshot_accept()</code>).</p>
<div id="snapshot-format" class="section level3">
<h3>Snapshot format</h3>
<p>Snapshots are recorded using a subset of markdown. You might wonder
why we use markdown? It’s important that snapshots be readable by
humans, because humans have to look at it during code reviews. Reviewers
often don’t run your code but still want to understand the changes.</p>
<p>Here’s the snapshot file generated by the test above:</p>
<div class="sourceCode" id="cb7"><pre class="sourceCode md"><code class="sourceCode markdown"><span id="cb7-1"><a href="#cb7-1" tabindex="-1"></a><span class="fu"># bullets</span></span>
<span id="cb7-2"><a href="#cb7-2" tabindex="-1"></a></span>
<span id="cb7-3"><a href="#cb7-3" tabindex="-1"></a><span class="in">    &lt;ul&gt;</span></span>
<span id="cb7-4"><a href="#cb7-4" tabindex="-1"></a><span class="in">      &lt;li&gt;a&lt;/li&gt;</span></span>
<span id="cb7-5"><a href="#cb7-5" tabindex="-1"></a><span class="in">    &lt;/ul&gt;</span></span>
<span id="cb7-6"><a href="#cb7-6" tabindex="-1"></a>  </span>
<span id="cb7-7"><a href="#cb7-7" tabindex="-1"></a>---</span>
<span id="cb7-8"><a href="#cb7-8" tabindex="-1"></a></span>
<span id="cb7-9"><a href="#cb7-9" tabindex="-1"></a><span class="in">    &lt;ul id=&quot;x&quot;&gt;</span></span>
<span id="cb7-10"><a href="#cb7-10" tabindex="-1"></a><span class="in">      &lt;li&gt;a&lt;/li&gt;</span></span>
<span id="cb7-11"><a href="#cb7-11" tabindex="-1"></a><span class="in">    &lt;/ul&gt;</span></span></code></pre></div>
<p>Each test starts with <code># {test name}</code>, a level 1 heading.
Within a test, each snapshot expectation is indented by four spaces,
i.e. as code, and are separated by <code>---</code>, a horizontal
rule.</p>
</div>
<div id="interactive-usage" class="section level3">
<h3>Interactive usage</h3>
<p>Because the snapshot output uses the name of the current test file
and the current test, snapshot expectations don’t really work when run
interactively at the console. Since they can’t automatically find the
reference output, they instead just print the current value for manual
inspection.</p>
</div>
</div>
<div id="other-types-of-output" class="section level2">
<h2>Other types of output</h2>
<p>So far we’ve focussed on snapshot tests for output printed to the
console. But <code>expect_snapshot()</code> also captures messages,
errors, and warnings<a href="#fn1" class="footnote-ref" id="fnref1"><sup>1</sup></a>. The following function generates a some
output, a message, and a warning:</p>
<div class="sourceCode" id="cb8"><pre class="sourceCode r"><code class="sourceCode r"><span id="cb8-1"><a href="#cb8-1" tabindex="-1"></a>f <span class="ot">&lt;-</span> <span class="cf">function</span>() {</span>
<span id="cb8-2"><a href="#cb8-2" tabindex="-1"></a>  <span class="fu">print</span>(<span class="st">&quot;Hello&quot;</span>)</span>
<span id="cb8-3"><a href="#cb8-3" tabindex="-1"></a>  <span class="fu">message</span>(<span class="st">&quot;Hi!&quot;</span>)</span>
<span id="cb8-4"><a href="#cb8-4" tabindex="-1"></a>  <span class="fu">warning</span>(<span class="st">&quot;How are you?&quot;</span>)</span>
<span id="cb8-5"><a href="#cb8-5" tabindex="-1"></a>}</span></code></pre></div>
<p>And <code>expect_snapshot()</code> captures them all:</p>
<div class="sourceCode" id="cb9"><pre class="sourceCode r"><code class="sourceCode r"><span id="cb9-1"><a href="#cb9-1" tabindex="-1"></a><span class="fu">test_that</span>(<span class="st">&quot;f() makes lots of noise&quot;</span>, {</span>
<span id="cb9-2"><a href="#cb9-2" tabindex="-1"></a>  <span class="fu">expect_snapshot</span>(<span class="fu">f</span>())</span>
<span id="cb9-3"><a href="#cb9-3" tabindex="-1"></a>})</span>
<span id="cb9-4"><a href="#cb9-4" tabindex="-1"></a><span class="co">#&gt; ── Warning: f() makes lots of noise ────────────────────────────────────────────</span></span>
<span id="cb9-5"><a href="#cb9-5" tabindex="-1"></a><span class="co">#&gt; Adding new snapshot:</span></span>
<span id="cb9-6"><a href="#cb9-6" tabindex="-1"></a><span class="co">#&gt; Code</span></span>
<span id="cb9-7"><a href="#cb9-7" tabindex="-1"></a><span class="co">#&gt;   f()</span></span>
<span id="cb9-8"><a href="#cb9-8" tabindex="-1"></a><span class="co">#&gt; Output</span></span>
<span id="cb9-9"><a href="#cb9-9" tabindex="-1"></a><span class="co">#&gt;   [1] &quot;Hello&quot;</span></span>
<span id="cb9-10"><a href="#cb9-10" tabindex="-1"></a><span class="co">#&gt; Message</span></span>
<span id="cb9-11"><a href="#cb9-11" tabindex="-1"></a><span class="co">#&gt;   Hi!</span></span>
<span id="cb9-12"><a href="#cb9-12" tabindex="-1"></a><span class="co">#&gt; Condition</span></span>
<span id="cb9-13"><a href="#cb9-13" tabindex="-1"></a><span class="co">#&gt;   Warning in `f()`:</span></span>
<span id="cb9-14"><a href="#cb9-14" tabindex="-1"></a><span class="co">#&gt;   How are you?</span></span></code></pre></div>
<p>Capturing errors is <em>slightly</em> more difficult because
<code>expect_snapshot()</code> will fail when there’s an error:</p>
<div class="sourceCode" id="cb10"><pre class="sourceCode r"><code class="sourceCode r"><span id="cb10-1"><a href="#cb10-1" tabindex="-1"></a><span class="fu">test_that</span>(<span class="st">&quot;you can&#39;t add a number and a letter&quot;</span>, {</span>
<span id="cb10-2"><a href="#cb10-2" tabindex="-1"></a>  <span class="fu">expect_snapshot</span>(<span class="dv">1</span> <span class="sc">+</span> <span class="st">&quot;a&quot;</span>)</span>
<span id="cb10-3"><a href="#cb10-3" tabindex="-1"></a>})</span>
<span id="cb10-4"><a href="#cb10-4" tabindex="-1"></a><span class="co">#&gt; ── Error: you can&#39;t add a number and a letter ──────────────────────────────────</span></span>
<span id="cb10-5"><a href="#cb10-5" tabindex="-1"></a><span class="co">#&gt; Error in `1 + &quot;a&quot;`: non-numeric argument to binary operator</span></span>
<span id="cb10-6"><a href="#cb10-6" tabindex="-1"></a><span class="co">#&gt; Backtrace:</span></span>
<span id="cb10-7"><a href="#cb10-7" tabindex="-1"></a><span class="co">#&gt;     ▆</span></span>
<span id="cb10-8"><a href="#cb10-8" tabindex="-1"></a><span class="co">#&gt;  1. └─testthat::expect_snapshot(1 + &quot;a&quot;)</span></span>
<span id="cb10-9"><a href="#cb10-9" tabindex="-1"></a><span class="co">#&gt;  2.   └─rlang::cnd_signal(state$error)</span></span>
<span id="cb10-10"><a href="#cb10-10" tabindex="-1"></a><span class="co">#&gt; Error:</span></span>
<span id="cb10-11"><a href="#cb10-11" tabindex="-1"></a><span class="co">#&gt; ! Test failed</span></span></code></pre></div>
<p>This is a safety valve that ensures that you don’t accidentally write
broken code. To deliberately snapshot an error, you’ll have to
specifically request it with <code>error = TRUE</code>:</p>
<div class="sourceCode" id="cb11"><pre class="sourceCode r"><code class="sourceCode r"><span id="cb11-1"><a href="#cb11-1" tabindex="-1"></a><span class="fu">test_that</span>(<span class="st">&quot;you can&#39;t add a number and a letter&quot;</span>, {</span>
<span id="cb11-2"><a href="#cb11-2" tabindex="-1"></a>  <span class="fu">expect_snapshot</span>(<span class="dv">1</span> <span class="sc">+</span> <span class="st">&quot;a&quot;</span>, <span class="at">error =</span> <span class="cn">TRUE</span>)</span>
<span id="cb11-3"><a href="#cb11-3" tabindex="-1"></a>})</span>
<span id="cb11-4"><a href="#cb11-4" tabindex="-1"></a><span class="co">#&gt; ── Warning: you can&#39;t add a number and a letter ────────────────────────────────</span></span>
<span id="cb11-5"><a href="#cb11-5" tabindex="-1"></a><span class="co">#&gt; Adding new snapshot:</span></span>
<span id="cb11-6"><a href="#cb11-6" tabindex="-1"></a><span class="co">#&gt; Code</span></span>
<span id="cb11-7"><a href="#cb11-7" tabindex="-1"></a><span class="co">#&gt;   1 + &quot;a&quot;</span></span>
<span id="cb11-8"><a href="#cb11-8" tabindex="-1"></a><span class="co">#&gt; Condition</span></span>
<span id="cb11-9"><a href="#cb11-9" tabindex="-1"></a><span class="co">#&gt;   Error in `1 + &quot;a&quot;`:</span></span>
<span id="cb11-10"><a href="#cb11-10" tabindex="-1"></a><span class="co">#&gt;   ! non-numeric argument to binary operator</span></span></code></pre></div>
<p>When the code gets longer, I like to put <code>error = TRUE</code> up
front so it’s a little more obvious:</p>
<div class="sourceCode" id="cb12"><pre class="sourceCode r"><code class="sourceCode r"><span id="cb12-1"><a href="#cb12-1" tabindex="-1"></a><span class="fu">test_that</span>(<span class="st">&quot;you can&#39;t add weird things&quot;</span>, {</span>
<span id="cb12-2"><a href="#cb12-2" tabindex="-1"></a>  <span class="fu">expect_snapshot</span>(<span class="at">error =</span> <span class="cn">TRUE</span>, {</span>
<span id="cb12-3"><a href="#cb12-3" tabindex="-1"></a>    <span class="dv">1</span> <span class="sc">+</span> <span class="st">&quot;a&quot;</span></span>
<span id="cb12-4"><a href="#cb12-4" tabindex="-1"></a>    mtcars <span class="sc">+</span> iris</span>
<span id="cb12-5"><a href="#cb12-5" tabindex="-1"></a>    mean <span class="sc">+</span> sum</span>
<span id="cb12-6"><a href="#cb12-6" tabindex="-1"></a>  })</span>
<span id="cb12-7"><a href="#cb12-7" tabindex="-1"></a>})</span>
<span id="cb12-8"><a href="#cb12-8" tabindex="-1"></a><span class="co">#&gt; ── Warning: you can&#39;t add weird things ─────────────────────────────────────────</span></span>
<span id="cb12-9"><a href="#cb12-9" tabindex="-1"></a><span class="co">#&gt; Adding new snapshot:</span></span>
<span id="cb12-10"><a href="#cb12-10" tabindex="-1"></a><span class="co">#&gt; Code</span></span>
<span id="cb12-11"><a href="#cb12-11" tabindex="-1"></a><span class="co">#&gt;   1 + &quot;a&quot;</span></span>
<span id="cb12-12"><a href="#cb12-12" tabindex="-1"></a><span class="co">#&gt; Condition</span></span>
<span id="cb12-13"><a href="#cb12-13" tabindex="-1"></a><span class="co">#&gt;   Error in `1 + &quot;a&quot;`:</span></span>
<span id="cb12-14"><a href="#cb12-14" tabindex="-1"></a><span class="co">#&gt;   ! non-numeric argument to binary operator</span></span>
<span id="cb12-15"><a href="#cb12-15" tabindex="-1"></a><span class="co">#&gt; Code</span></span>
<span id="cb12-16"><a href="#cb12-16" tabindex="-1"></a><span class="co">#&gt;   mtcars + iris</span></span>
<span id="cb12-17"><a href="#cb12-17" tabindex="-1"></a><span class="co">#&gt; Condition</span></span>
<span id="cb12-18"><a href="#cb12-18" tabindex="-1"></a><span class="co">#&gt;   Error in `Ops.data.frame()`:</span></span>
<span id="cb12-19"><a href="#cb12-19" tabindex="-1"></a><span class="co">#&gt;   ! &#39;+&#39; only defined for equally-sized data frames</span></span>
<span id="cb12-20"><a href="#cb12-20" tabindex="-1"></a><span class="co">#&gt; Code</span></span>
<span id="cb12-21"><a href="#cb12-21" tabindex="-1"></a><span class="co">#&gt;   mean + sum</span></span>
<span id="cb12-22"><a href="#cb12-22" tabindex="-1"></a><span class="co">#&gt; Condition</span></span>
<span id="cb12-23"><a href="#cb12-23" tabindex="-1"></a><span class="co">#&gt;   Error in `mean + sum`:</span></span>
<span id="cb12-24"><a href="#cb12-24" tabindex="-1"></a><span class="co">#&gt;   ! non-numeric argument to binary operator</span></span></code></pre></div>
</div>
<div id="snapshotting-values" class="section level2">
<h2>Snapshotting values</h2>
<p><code>expect_snapshot()</code> is the most used snapshot function
because it records everything: the code you run, printed output,
messages, warnings, and errors. If you care about the return value
rather than any side-effects, you may might to use
<code>expect_snapshot_value()</code> instead. It offers a number of
serialisation approaches that provide a tradeoff between accuracy and
human readability.</p>
<div class="sourceCode" id="cb13"><pre class="sourceCode r"><code class="sourceCode r"><span id="cb13-1"><a href="#cb13-1" tabindex="-1"></a><span class="fu">test_that</span>(<span class="st">&quot;can snapshot a simple list&quot;</span>, {</span>
<span id="cb13-2"><a href="#cb13-2" tabindex="-1"></a>  x <span class="ot">&lt;-</span> <span class="fu">list</span>(<span class="at">a =</span> <span class="fu">list</span>(<span class="dv">1</span>, <span class="dv">5</span>, <span class="dv">10</span>), <span class="at">b =</span> <span class="fu">list</span>(<span class="st">&quot;elephant&quot;</span>, <span class="st">&quot;banana&quot;</span>))</span>
<span id="cb13-3"><a href="#cb13-3" tabindex="-1"></a>  <span class="fu">expect_snapshot_value</span>(x)</span>
<span id="cb13-4"><a href="#cb13-4" tabindex="-1"></a>})</span>
<span id="cb13-5"><a href="#cb13-5" tabindex="-1"></a><span class="co">#&gt; ── Warning: can snapshot a simple list ─────────────────────────────────────────</span></span>
<span id="cb13-6"><a href="#cb13-6" tabindex="-1"></a><span class="co">#&gt; Adding new snapshot:</span></span>
<span id="cb13-7"><a href="#cb13-7" tabindex="-1"></a><span class="co">#&gt; {</span></span>
<span id="cb13-8"><a href="#cb13-8" tabindex="-1"></a><span class="co">#&gt;   &quot;a&quot;: [</span></span>
<span id="cb13-9"><a href="#cb13-9" tabindex="-1"></a><span class="co">#&gt;     1,</span></span>
<span id="cb13-10"><a href="#cb13-10" tabindex="-1"></a><span class="co">#&gt;     5,</span></span>
<span id="cb13-11"><a href="#cb13-11" tabindex="-1"></a><span class="co">#&gt;     10</span></span>
<span id="cb13-12"><a href="#cb13-12" tabindex="-1"></a><span class="co">#&gt;   ],</span></span>
<span id="cb13-13"><a href="#cb13-13" tabindex="-1"></a><span class="co">#&gt;   &quot;b&quot;: [</span></span>
<span id="cb13-14"><a href="#cb13-14" tabindex="-1"></a><span class="co">#&gt;     &quot;elephant&quot;,</span></span>
<span id="cb13-15"><a href="#cb13-15" tabindex="-1"></a><span class="co">#&gt;     &quot;banana&quot;</span></span>
<span id="cb13-16"><a href="#cb13-16" tabindex="-1"></a><span class="co">#&gt;   ]</span></span>
<span id="cb13-17"><a href="#cb13-17" tabindex="-1"></a><span class="co">#&gt; }</span></span></code></pre></div>
</div>
<div id="whole-file-snapshotting" class="section level2">
<h2>Whole file snapshotting</h2>
<p><code>expect_snapshot()</code>,
<code>expect_snapshot_output()</code>,
<code>expect_snapshot_error()</code>, and
<code>expect_snapshot_value()</code> use one snapshot file per test
file. But that doesn’t work for all file types — for example, what
happens if you want to snapshot an image?
<code>expect_snapshot_file()</code> provides an alternative workflow
that generates one snapshot per expectation, rather than one file per
test. Assuming you’re in <code>test-burger.R</code> then the snapshot
created by
<code>expect_snapshot_file(code_that_returns_path_to_file(), &quot;toppings.png&quot;)</code>
would be saved in
<code>tests/testthat/_snaps/burger/toppings.png</code>. If a future
change in the code creates a different file it will be saved in
<code>tests/testthat/_snaps/burger/toppings.new.png</code>.</p>
<p>Unlike <code>expect_snapshot()</code> and friends,
<code>expect_snapshot_file()</code> can’t provide an automatic diff when
the test fails. Instead you’ll need to call
<code>snapshot_review()</code>. This launches a Shiny app that allows
you to visually review each change and approve it if it’s
deliberate:</p>
<p><img role="img" aria-label="Screenshot of the Shiny app for reviewing snapshot changes to images. It shows the changes to a png file of a plot created in a snapshot test. There is a button to accept the changed snapshot, or to skip it." src="" alt="Screenshot of the Shiny app for reviewing snapshot changes to images. It shows the changes to a png file of a plot created in a snapshot test. There is a button to accept the changed snapshot, or to skip it." width="600" /></p>
<p><img role="img" aria-label="Screenshot of the Shiny app for reviewing snapshot changes to text files. It shows the changes to a .R file created in a snapshot test, where a line has been removed. There is a button to accept the changed snapshot, or to skip it." src="" alt="Screenshot of the Shiny app for reviewing snapshot changes to text files. It shows the changes to a .R file created in a snapshot test, where a line has been removed. There is a button to accept the changed snapshot, or to skip it." width="600" /></p>
<p>The display varies based on the file type (currently text files,
common image files, and csv files are supported).</p>
<p>Sometimes the failure occurs in a non-interactive environment where
you can’t run <code>snapshot_review()</code>, e.g. in
<code>R CMD check</code>. In this case, the easiest fix is to retrieve
the <code>.new</code> file, copy it into the appropriate directory, then
run <code>snapshot_review()</code> locally. If your code was run on a CI
platform, you’ll need to start by downloading the run “artifact”, which
contains the check folder.</p>
<p>In most cases, we don’t expect you to use
<code>expect_snapshot_file()</code> directly. Instead, you’ll use it via
a wrapper that does its best to gracefully skip tests when differences
in platform or package versions make it unlikely to generate perfectly
reproducible output.</p>
</div>
<div id="previous-work" class="section level2">
<h2>Previous work</h2>
<p>This is not the first time that testthat has attempted to provide
snapshot testing (although it’s the first time I knew what other
languages called them). This section describes some of the previous
attempts and why we believe the new approach is better.</p>
<ul>
<li><p><code>verify_output()</code> has three main drawbacks:</p>
<ul>
<li><p>You have to supply a path where the output will be saved. This
seems like a small issue, but thinking of a good name, and managing the
difference between interactive and test-time paths introduces a
surprising amount of friction.</p></li>
<li><p>It always overwrites the previous result; automatically assuming
that the changes are correct. That means you have to use it with git and
it’s easy to accidentally accept unwanted changes.</p></li>
<li><p>It’s relatively coarse grained, which means tests that use it
tend to keep growing and growing.</p></li>
</ul></li>
<li><p><code>expect_known_output()</code> is finer grained version of
<code>verify_output()</code> that captures output from a single
function. The requirement to produce a path for each individual
expectation makes it even more painful to use.</p></li>
<li><p><code>expect_known_value()</code> and
<code>expect_known_hash()</code> have all the disadvantages of
<code>expect_known_output()</code>, but also produce binary output
meaning that you can’t easily review test differences in pull
requests.</p></li>
</ul>
</div>
<div class="footnotes footnotes-end-of-document">
<hr />
<ol>
<li id="fn1"><p>We no longer recommend
<code>expect_snapshot_output()</code>,
<code>expect_snapshot_warning()</code>, or
<code>expect_snapshot_error()</code>. Just use
<code>expect_snapshot()</code>.<a href="#fnref1" class="footnote-back">↩︎</a></p></li>
</ol>
</div>



<!-- code folding -->


<!-- dynamically load mathjax for compatibility with self-contained -->
<script>
  (function () {
    var script = document.createElement("script");
    script.type = "text/javascript";
    script.src  = "https://mathjax.rstudio.com/latest/MathJax.js?config=TeX-AMS-MML_HTMLorMML";
    document.getElementsByTagName("head")[0].appendChild(script);
  })();
</script>

</body>
</html>