1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253
|
#' Plot Data on 3D Globes
#'
#' Plot points, arcs and images on a globe in 3D using Three.js. The globe
#' can be rotated and and zoomed.
#'
#' @param img A character string representing a file path or URI of an image to plot on the globe surface.
#' @param lat Optional data point decimal latitudes, must be of same length as \code{long}
#' (negative values indicate south, positive north).
#' @param long Optional data point decimal longitudes, must be of same length as \code{lat}
#' (negative values indicate west, positive east).
#' @param color Either a single color value indicating the color of all data points, or a
#' vector of values of the same length as \code{lat} indicating color of each point.
#' @param value Either a single value indicating the height of all data points, or a vector of
#' values of the same length as \code{lat} indicating height of each point.
#' @param arcs Optional four-column data frame specifying arcs to plot. The columns of the data frame,
#' in order, must indicate the starting latitude, starting longitude, ending latitude, and ending longitude.
#' @param arcsColor Either a single color value indicating the color of all arcs, or a vector of values
#' of the same length as the number of rows of \code{arcs}.
#' @param arcsLwd Either a single value indicating the line width of all arcs, or a vector of values of
#' the same length as the number of rows of \code{arcs}.
#' @param arcsHeight A single value between 0 and 1 controlling the height above the globe of each arc.
#' @param arcsOpacity A single value between 0 and 1 indicating the opacity of all arcs.
#' @param atmosphere TRUE enables WebGL atmpsphere effect.
#' @param bg Plot background color.
#' @param width The container div width.
#' @param height The container div height.
#' @param elementId Use an explicit element ID for the widget (rather than an automatically generated one). Useful if you have other JavaScript that needs to explicitly discover and interact with a specific widget instance.
#' @param ... Additional arguments to pass to the three.js renderer (see
#' below for more information on these options).
#'
#' @return
#' An htmlwidget object (displayed using the object's show or print method).
#'
#' @note
#' The \code{img} argument specifies the WebGL texture image to wrap on a
#' sphere. If you plan to plot points using \code{lat} and \code{lon}
#' the image must be a plate carree (aka lat/long) equirectangular
#' map projection; see
#' \url{https://en.wikipedia.org/wiki/Equirectangular_projection} for
#' details.
#' Lat/long maps are commonly found for most planetary bodies in the
#' solar system, and are also easily generated directly in R
#' (see the references and examples below).
#'
#' @section Available rendering options:
#' \itemize{
#' \item{"bodycolor"}{ The diffuse reflective color of the globe.}
#' \item{"emissive"}{ The emissive color of the globe object.}
#' \item{"lightcolor"}{ The color of the ambient light in the scene.}
#' \item{"fov"}{ The initial field of view, default is 35.}
#' \item{"rotationlat"}{ The initial globe latitudinal rotation in radians, default is 0.}
#' \item{"rotationlong"}{ The initial globe longitudinal rotation in radians, default is 0.}
#' \item{"pointsize"}{ The numeric size of the points/bars, default is 1.}
#' \item{"renderer"}{ Manually set the three.js renderer to one of 'auto' or 'canvas'.
#' The canvas renderer works across a greater variety of
#' viewers and browsers. The default setting of 'auto' automatically chooses
#' WebGL rendering if it's available.}
#' }
#' Specify colors with standard color names or hex color representations.
#' The default values (well-suited to many earth-like map images) are
#' \code{lightcolor = "#aaeeff"}, \code{emissive = "#000000"}, and \code{bodycolor = "#ffffff"}.
#' Larger \code{fov} values result in a smaller (zoomed out) globe.
#' The latitude and longitude rotation values are relative to the center of
#' the map image. Their default values of zero radians result in the front of the
#' globe corresponding to the center of the flat map image.
#'
#' @references
#' The three.js project \url{http://threejs.org}.
#' (The corresponding three.js javascript file is in
#' \code{ system.file("htmlwidgets/globejs",package="threejs")}.)
#'
#' An excellent overview of available map coordinate reference systems (PDF):
#' \url{https://www.nceas.ucsb.edu/~frazier/RSpatialGuides/OverviewCoordinateReferenceSystems.pdf}
#'
#' @examples
#' # Plot flights to frequent destinations from Callum Prentice's
#' # global flight data set,
#' # http://callumprentice.github.io/apps/flight_stream/index.html
#' data(flights)
#' # Approximate locations as factors
#' dest <- factor(sprintf("%.2f:%.2f",flights[,3], flights[,4]))
#' # A table of destination frequencies
#' freq <- sort(table(dest), decreasing=TRUE)
#' # The most frequent destinations in these data, possibly hub airports?
#' frequent_destinations <- names(freq)[1:10]
#' # Subset the flight data by destination frequency
#' idx <- dest %in% frequent_destinations
#' frequent_flights <- flights[idx, ]
#' # Lat/long and counts of frequent flights
#' ll <- unique(frequent_flights[,3:4])
#' # Plot frequent destinations as bars, and the flights to and from
#' # them as arcs. Adjust arc width and color by frequency.
#' globejs(lat=ll[, 1], long=ll[, 2], arcs=frequent_flights,
#' bodycolor="#aaaaff", arcsHeight=0.3, arcsLwd=2,
#' arcsColor="#ffff00", arcsOpacity=0.15,
#' atmosphere=TRUE, color="#00aaff", pointsize=0.5)
#'
#' \dontrun{
#' # Plot populous world cities from the maps package.
#' library(threejs)
#' library(maps)
#' data(world.cities, package="maps")
#' cities <- world.cities[order(world.cities$pop, decreasing=TRUE)[1:1000],]
#' value <- 100 * cities$pop / max(cities$pop)
#' col <- colorRampPalette(c("cyan", "lightgreen"))(10)[floor(10 * value/100) + 1]
#' globejs(lat=cities$lat, long=cities$long, value=value, color=col, atmosphere=TRUE)
#'
#' # Plot the data on the moon:
#' moon <- system.file("images/moon.jpg", package="threejs")
#' globejs(img=moon, bodycolor="#555555", lightcolor="#aaaaaa",
#' lat=cities$lat, long=cities$long,
#' value=value, color=col)
#'
#' # Using global plots from the maptools, rworldmap, or sp packages.
#'
#' # Instead of using ready-made images of the earth, we can use
#' # many R spatial imaging packages to produce globe images
#' # dynamically. With a little extra effort you can build globes with total
#' # control over how they are plotted.
#'
#' library(maptools)
#' library(threejs)
#' data(wrld_simpl)
#'
#' bgcolor <- "#000025"
#' earth <- tempfile(fileext=".jpg")
#'
#' # NOTE: Use antialiasing to smooth border boundary lines. But! Set the jpeg
#' # background color to the globe background color to avoid a visible aliasing
#' # effect at the the plot edges.
#'
#' jpeg(earth, width=2048, height=1024, quality=100, bg=bgcolor, antialias="default")
#' par(mar = c(0,0,0,0), pin = c(4,2), pty = "m", xaxs = "i",
#' xaxt = "n", xpd = FALSE, yaxs = "i", bty = "n", yaxt = "n")
#' plot(wrld_simpl, col="black", bg=bgcolor, border="cyan", ann=FALSE,
#" axes=FALSE, xpd=FALSE, xlim=c(-180,180), ylim=c(-90,90),
#' setParUsrBB=TRUE)
#' dev.off()
#' globejs(earth)
#'
#' # A shiny example:
#' shiny::runApp(system.file("examples/globe",package="threejs"))
#' }
#'
#' # See http://bwlewis.github.io/rthreejs for additional examples.
#' @export
globejs <- function(
img=system.file("images/world.jpg", package="threejs"),
lat, long,
value=40,
color="#00ffff",
arcs,
arcsColor="#99aaff",
arcsHeight=0.4,
arcsLwd=1,
arcsOpacity=0.2,
atmosphere=FALSE,
bg="black",
height = NULL,
width = NULL,
elementId=NULL,
...)
{
if(is.null(elementId))
{
elementId <- paste0(sample(c(letters, LETTERS, 0:9), 10, replace=TRUE), collapse="")
}
if (missing(lat) || missing(long))
{
lat <- NULL
long <- NULL
}
# Strip alpha channel from colors
i <- grep("^#", color)
if (length(i) > 0)
{
j <- nchar(color[i]) > 7
if (any(j))
{
color[i][j] <- substr(color[i][j], 1, 7)
}
}
i <- grep("^#", arcsColor)
if (length(i) > 0)
{
j <- nchar(arcsColor[i]) > 7
if (any(j))
{
arcsColor[i][j] <- substr(arcsColor[i][j], 1, 7)
}
}
i <- grep("^#", bg)
if (length(i) > 0) bg <- substr(bg, 1, 7)
if (missing(arcs))
arcs <- NULL
else
{
arcs <- data.frame(arcs)
names(arcs) <- c("fromlat", "fromlong", "tolat", "tolong")
}
arcsHeight <- max(min(arcsHeight, 1), 0.2)
arcsOpacity <- max(min(arcsOpacity, 1), 0)
options <- list(lat=lat, long=long, color=color, arcsOpacity=arcsOpacity,
value=value, atmosphere=atmosphere, bg=bg, arcs=arcs,
arcsColor=arcsColor, arcsLwd=arcsLwd, arcsHeight=arcsHeight)
additional_args <- list(...)
if (length(additional_args) > 0) options <- c(options, additional_args)
# Clean up optional color arguments
if ("bodycolor" %in% names(options))
{
i <- grep("^#", options$bodycolor)
if (length(i) > 0) options$bodycolor <- substr(options$bodycolor, 1, 7)
}
if ("emissive" %in% names(options))
{
i <- grep("^#", options$emissive)
if (length(i) > 0) options$emissive <- substr(options$emissive, 1, 7)
}
if ("lightcolor" %in% names(options))
{
i <- grep("^#", options$lightcolor)
if (length(i) > 0) options$lightcolor <- substr(options$lightcolor, 1, 7)
}
# Convert image files to dataURI using the texture function
if (!is.list(img)) img <- texture(img)
x <- c(img, options)
htmlwidgets::createWidget(
name = "globe",
x = x,
width = width,
height = height,
htmlwidgets::sizingPolicy(padding = 0, browser.fill = TRUE),
package = "threejs",
elementId=elementId)
}
#' @rdname threejs-shiny
#' @export
globeOutput <- function(outputId, width = "100%", height = "600px") {
shinyWidgetOutput(outputId, "globe", width, height,
package = "threejs")
}
#' @rdname threejs-shiny
#' @export
renderGlobe <- function(expr, env = parent.frame(), quoted = FALSE) {
if (!quoted) {
expr <- substitute(expr)
} # force quoted
shinyRenderWidget(expr, globeOutput, env, quoted = TRUE)
}
|