1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374
|
#' Coerce lists, matrices, and more to data frames
#'
#' @description
#' `as_tibble()` turns an existing object, such as a data frame or
#' matrix, into a so-called tibble, a data frame with class [`tbl_df`]. This is
#' in contrast with [tibble()], which builds a tibble from individual columns.
#' `as_tibble()` is to [`tibble()`] as [base::as.data.frame()] is to
#' [base::data.frame()].
#'
#' `as_tibble()` is an S3 generic, with methods for:
#' * [`data.frame`][base::data.frame()]: Thin wrapper around the `list` method
#' that implements tibble's treatment of [rownames].
#' * [`matrix`][base::matrix()], [`poly`][stats::poly()],
#' [`ts`][stats::ts()], [`table`][base::table()]
#' * Default: Other inputs are first coerced with [base::as.data.frame()].
#'
#' @section Row names:
#' The default behavior is to silently remove row names.
#'
#' New code should explicitly convert row names to a new column using the
#' `rownames` argument.
#'
#' For existing code that relies on the retention of row names, call
#' `pkgconfig::set_config("tibble::rownames" = NA)` in your script or in your
#' package's [.onLoad()] function.
#'
#' @section Life cycle:
#' Using `as_tibble()` for vectors is superseded as of version 3.0.0,
#' prefer the more expressive `as_tibble_row()` and
#' `as_tibble_col()` variants for new code.
#'
#' @seealso [tibble()] constructs a tibble from individual columns. [enframe()]
#' converts a named vector to a tibble with a column of names and column of
#' values. Name repair is implemented using [vctrs::vec_as_names()].
#'
#' @param x A data frame, list, matrix, or other object that could reasonably be
#' coerced to a tibble.
#' @param ... Unused, for extensibility.
#' @inheritParams tibble
#' @param rownames How to treat existing row names of a data frame or matrix:
#' * `NULL`: remove row names. This is the default.
#' * `NA`: keep row names.
#' * A string: the name of a new column. Existing rownames are transferred
#' into this column and the `row.names` attribute is deleted.
#' Read more in [rownames].
#' @param _n,validate
#' `r lifecycle::badge("soft-deprecated")`
#'
#' For compatibility only, do not use for new code.
#' @export
#' @examples
#' m <- matrix(rnorm(50), ncol = 5)
#' colnames(m) <- c("a", "b", "c", "d", "e")
#' df <- as_tibble(m)
as_tibble <- function(x, ...,
.rows = NULL,
.name_repair = c("check_unique", "unique", "universal", "minimal"),
rownames = pkgconfig::get_config("tibble::rownames", NULL)) {
UseMethod("as_tibble")
}
#' @export
#' @rdname as_tibble
as_tibble.data.frame <- function(x, validate = NULL, ...,
.rows = NULL,
.name_repair = c("check_unique", "unique", "universal", "minimal"),
rownames = pkgconfig::get_config("tibble::rownames", NULL)) {
.name_repair <- compat_name_repair(.name_repair, validate, missing(.name_repair))
old_rownames <- raw_rownames(x)
if (is.null(.rows)) {
.rows <- nrow(x)
}
result <- lst_to_tibble(unclass(x), .rows, .name_repair)
if (is.null(rownames)) {
result
} else if (is.na(rownames)) {
attr(result, "row.names") <- old_rownames
result
} else {
if (length(old_rownames) > 0 && is.na(old_rownames[1L])) {
# if implicit rownames
old_rownames <- seq_len(abs(old_rownames[2L]))
}
old_rownames <- as.character(old_rownames)
add_column(result, !!rownames := old_rownames, .before = 1L, .name_repair = "minimal")
}
}
#' @export
#' @rdname as_tibble
as_tibble.list <- function(x, validate = NULL, ..., .rows = NULL,
.name_repair = c("check_unique", "unique", "universal", "minimal")) {
.name_repair <- compat_name_repair(.name_repair, validate, missing(.name_repair))
lst_to_tibble(x, .rows, .name_repair, col_lengths(x))
}
lst_to_tibble <- function(x, .rows, .name_repair, lengths = NULL) {
x <- unclass(x)
x <- set_repaired_names(x, repair_hint = TRUE, .name_repair)
x <- check_valid_cols(x)
recycle_columns(x, .rows, lengths)
}
compat_name_repair <- function(.name_repair, validate, .missing_name_repair) {
if (is.null(validate)) return(.name_repair)
if (!.missing_name_repair) {
name_repair <- .name_repair
} else if (isTRUE(validate)) {
name_repair <- "check_unique"
} else {
name_repair <- "minimal"
}
deprecate_soft("2.0.0", "tibble::as_tibble(validate = )", "as_tibble(.name_repair =)",
env = foreign_caller_env()
)
name_repair
}
check_valid_cols <- function(x, pos = NULL) {
names_x <- names2(x)
is_xd <- which(!map_lgl(x, is_valid_col))
if (has_length(is_xd)) {
classes <- map_chr(x[is_xd], friendly_type_of)
cnd_signal(error_column_scalar_type(names_x[is_xd], pos[is_xd], classes))
}
# 657
x[] <- map(x, make_valid_col)
invisible(x)
}
make_valid_col <- function(x) {
if (is.expression(x)) {
x <- as.list(x)
}
x
}
is_valid_col <- function(x) {
# 657
vec_is(x) || is.expression(x)
}
recycle_columns <- function(x, .rows, lengths) {
nrow <- guess_nrow(lengths, .rows)
# Shortcut if all columns have the requested or implied length
different_len <- which(lengths != nrow)
if (is_empty(different_len)) return(new_tibble(x, nrow = nrow, subclass = NULL))
if (any(lengths[different_len] != 1)) {
cnd_signal(error_incompatible_size(.rows, names(x), lengths, "Requested with `.rows` argument"))
}
if (nrow != 1L) {
short <- which(lengths == 1L)
if (has_length(short)) {
x[short] <- map(x[short], vec_recycle, nrow)
}
}
new_tibble(x, nrow = nrow, subclass = NULL)
}
guess_nrow <- function(lengths, .rows) {
if (!is.null(.rows)) {
return(.rows)
}
if (is_empty(lengths)) {
return(0)
}
nontrivial_lengths <- lengths[lengths != 1L]
if (is_empty(nontrivial_lengths)) {
return(1)
}
max(nontrivial_lengths)
}
#' @export
#' @rdname as_tibble
as_tibble.matrix <- function(x, ..., validate = NULL, .name_repair = NULL) {
m <- matrixToDataFrame(x)
names <- colnames(x)
if (is.null(.name_repair)) {
if ((is.null(names) || any(bad_names <- duplicated(names) | names == "")) && has_length(x)) {
deprecate_warn("2.0.0", "as_tibble.matrix(x = 'must have unique column names if `.name_repair` is omitted')",
details = "Using compatibility `.name_repair`."
)
compat_names <- paste0("V", seq_along(m))
if (is.null(names)) {
names <- compat_names
} else {
names[bad_names] <- compat_names[bad_names]
}
.name_repair <- function(x) names
} else {
.name_repair <- "check_unique"
}
validate <- NULL
}
colnames(m) <- names
as_tibble(m, ..., validate = validate, .name_repair = .name_repair)
}
#' @export
as_tibble.poly <- function(x, ...) {
m <- matrixToDataFrame(unclass(x))
colnames(m) <- colnames(x)
as_tibble(m, ...)
}
#' @export
as_tibble.ts <- function(x, ..., .name_repair = "minimal") {
df <- as.data.frame(x)
if (length(dim(x)) == 2) {
colnames(df) <- colnames(x)
}
as_tibble(df, ..., .name_repair = .name_repair)
}
#' @export
#' @param n Name for count column, default: `"n"`.
#' @rdname as_tibble
as_tibble.table <- function(x, `_n` = "n", ..., n = `_n`, .name_repair = "check_unique") {
if (!missing(`_n`)) {
warn("Please pass `n` as a named argument to `as_tibble.table()`.")
}
df <- as.data.frame(x, stringsAsFactors = FALSE)
names(df) <- repaired_names(
c(names2(dimnames(x)), n),
repair_hint = TRUE, .name_repair = .name_repair
)
# Names already repaired:
as_tibble(df, ..., .name_repair = "minimal")
}
#' @export
#' @rdname as_tibble
as_tibble.NULL <- function(x, ...) {
if (missing(x)) {
deprecate_soft("3.0.0", "as_tibble(x = 'can\\'t be missing')")
}
new_tibble(list(), nrow = 0)
}
#' @export
#' @rdname as_tibble
as_tibble.default <- function(x, ...) {
value <- x
if (is_atomic(value)) {
signal_superseded(
"3.0.0", "as_tibble(x = 'can\\'t be an atomic vector')",
"as_tibble_col()"
)
}
as_tibble(as.data.frame(value, stringsAsFactors = FALSE), ...)
}
#' @description
#' `as_tibble_row()` converts a vector to a tibble with one row.
#' If the input is a list, all elements must have size one.
#'
#' @rdname as_tibble
#' @export
#' @examples
#'
#' as_tibble_row(c(a = 1, b = 2))
#' as_tibble_row(list(c = "three", d = list(4:5)))
#' as_tibble_row(1:3, .name_repair = "unique")
as_tibble_row <- function(x,
.name_repair = c("check_unique", "unique", "universal", "minimal")) {
if (!vec_is(x)) {
cnd_signal(error_as_tibble_row_vector(x))
}
names <- vectbl_names2(x, .name_repair = .name_repair)
# FIXME: Use vec_chop2() when https://github.com/r-lib/vctrs/pull/1226 is in
if (is_bare_list(x)) {
slices <- x
} else {
x <- vectbl_set_names(x, NULL)
slices <- lapply(seq_len(vec_size(x)), vec_slice, x = x)
names(slices) <- names
}
check_all_lengths_one(slices)
new_tibble(slices, nrow = 1)
}
check_all_lengths_one <- function(x) {
sizes <- col_lengths(x)
bad_lengths <- which(sizes != 1)
if (!is_empty(bad_lengths)) {
cnd_signal(error_as_tibble_row_size_one(
seq_along(x)[bad_lengths],
names2(x)[bad_lengths],
sizes[bad_lengths]
))
}
}
#' @description
#' `as_tibble_col()` converts a vector to a tibble with one column.
#'
#' @param column_name Name of the column.
#'
#' @rdname as_tibble
#' @export
#' @examples
#'
#' as_tibble_col(1:3)
#' as_tibble_col(
#' list(c = "three", d = list(4:5)),
#' column_name = "data"
#' )
as_tibble_col <- function(x, column_name = "value") {
# Side effect: checking that x is a vector
tibble(!!column_name := x)
}
# External ----------------------------------------------------------------
matrixToDataFrame <- function(x) {
.Call(`tibble_matrixToDataFrame`, x)
}
# Errors ------------------------------------------------------------------
error_column_scalar_type <- function(names, positions, classes) {
tibble_error(
problems(
"All columns in a tibble must be vectors:",
x = paste0("Column ", name_or_pos(names, positions), " is ", classes)
),
names = names
)
}
error_as_tibble_row_vector <- function(x) {
tibble_error(paste0(
"`x` must be a vector in `as_tibble_row()`, not ", class(x)[[1]], "."
))
}
error_as_tibble_row_size_one <- function(j, name, size) {
desc <- tick(name)
desc[name == ""] <- paste0("at position ", j[name == ""])
tibble_error(problems(
"All elements must be size one, use `list()` to wrap.",
paste0("Element ", desc, " is of size ", size, ".")
))
}
|