1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780
|
---
title: "Invariants: Comparing behavior with data frames"
#output: rmarkdown::word_document
output: rmarkdown::html_vignette
vignette: >
%\VignetteIndexEntry{Invariants: Comparing behavior with data frames}
%\VignetteEngine{knitr::rmarkdown}
%\VignetteEncoding{UTF-8}
---
<style type="text/css">
.dftbl {
width: 100%;
table-layout: fixed;
display: inline-table;
}
.error pre code {
color: red;
}
.warning pre code {
color: violet;
}
</style>
```{r, include = FALSE}
# To suppress messages
library(tibble)
library(vctrs)
knitr::opts_chunk$set(
collapse = TRUE,
comment = "#>",
error = TRUE
)
tibble:::set_dftbl_hooks()
options(
lifecycle_verbosity = "warning",
lifecycle_disable_warnings = FALSE,
lifecycle_verbose_soft_deprecation = TRUE,
lifecycle_repeat_warnings = TRUE
)
# Set to FALSE for production
eval_details <- (Sys.getenv("IN_GALLEY") != "")
```
This vignette defines invariants for subsetting and subset-assignment for tibbles, and illustrates where their behaviour differs from data frames.
The goal is to define a small set of invariants that consistently define how behaviors interact.
Some behaviors are defined using functions of the vctrs package, e.g. `vec_slice()`, `vec_recycle()` and `vec_as_index()`.
Refer to their documentation for more details about the invariants that they follow.
The subsetting and subassignment operators for data frames and tibbles are particularly tricky, because they support both row and column indexes, both of which are optionally missing.
We resolve this by first defining column access with `[[` and `$`, then column-wise subsetting with `[`, then row-wise subsetting, then the composition of both.
## Conventions
In this article, all behaviors are demonstrated using one example data frame and its tibble equivalent:
```{r setup}
library(tibble)
library(vctrs)
new_df <- function() {
df <- data.frame(n = c(1L, NA, 3L, NA))
df$c <- letters[5:8]
df$li <- list(9, 10:11, 12:14, "text")
df
}
new_tbl <- function() {
as_tibble(new_df())
}
```
Results of the same code for data frames and tibbles are presented side by side:
```{r show, dftbl = TRUE, dftbl_always = TRUE}
new_df()
```
If the results are identical (after converting to a data frame if necessary), only the tibble result is shown.
Subsetting operations are read-only.
The same objects are reused in all examples:
```{r ro}
df <- new_df()
tbl <- new_tbl()
```
Where needed, we also show examples with hierarchical columns containing a data frame or a matrix:
```{r setup2}
new_tbl2 <- function() {
tibble(
tb = tbl,
m = diag(4)
)
}
new_df2 <- function() {
df2 <- new_tbl2()
class(df2) <- "data.frame"
class(df2$tb) <- "data.frame"
df2
}
df2 <- new_df2()
tbl2 <- new_tbl2()
```
```{r show-compare-2, dftbl = TRUE}
new_df()
```
For subset assignment (subassignment, for short), we need a fresh copy of the data for each test.
The `with_*()` functions (omitted here for brevity) allow for a more concise notation.
These functions take an assignment expression, execute it on a fresh copy of the data, and return the data for printing.
The first example prints what's really executed, further examples omit this output.
```{r with-def, include = FALSE}
with_df <- function(code, verbose = FALSE) {
code <- rlang::enexpr(code)
full_code <- rlang::quo({
df <- new_df()
!!code
df
})
if (verbose) rlang::expr_print(rlang::quo_get_expr(full_code))
rlang::eval_tidy(full_code)
}
with_tbl <- function(code, verbose = FALSE) {
code <- rlang::enexpr(code)
full_code <- rlang::quo({
tbl <- new_tbl()
!!code
tbl
})
if (verbose) rlang::expr_print(rlang::quo_get_expr(full_code))
rlang::eval_tidy(full_code)
}
with_df2 <- function(code) {
code <- rlang::enexpr(code)
full_code <- rlang::quo({
df2 <- new_df2()
!!code
df2
})
rlang::eval_tidy(full_code)
}
with_tbl2 <- function(code) {
code <- rlang::enexpr(code)
full_code <- rlang::quo({
tbl2 <- new_tbl2()
!!code
tbl2
})
rlang::eval_tidy(full_code)
}
```
```{r with-demo, dftbl = TRUE}
with_df(df$n <- rev(df$n), verbose = TRUE)
```
## Column extraction
### Definition of `x[[j]]`
`x[[j]]` is equal to `.subset2(x, j)`.
```{r double-bracket-equivalent-to-subset2, dftbl = TRUE}
df[[1]]
.subset2(df, 1)
```
```{r double-bracket-equivalent-to-subset2-detail, dftbl = TRUE, include = eval_details, eval = eval_details}
identical(df[[3]], .subset2(df, 3))
identical(df2[["df"]], .subset2(df2, "df"))
```
NB: `x[[j]]` always returns an object of size `nrow(x)` if the column exists.
```{r double-bracket-retains-size, dftbl = TRUE, include = eval_details, eval = eval_details}
vec_size(df[[1]])
vec_size(df[[3]])
vec_size(df2[[1]])
vec_size(df2[[2]])
```
`j` must be a single number or a string, as enforced by `.subset2(x, j)`.
```{r double-bracket-requires-scalar-j-index, dftbl = TRUE}
df[[1:2]]
df[[c("n", "c")]]
df[[TRUE]]
df[[mean]]
```
`NA` indexes, numeric out-of-bounds (OOB) values, and non-integers throw an error:
```{r double-bracket-j-oob-numeric, dftbl = TRUE}
df[[NA]]
df[[NA_character_]]
df[[NA_integer_]]
df[[-1]]
df[[4]]
df[[1.5]]
df[[Inf]]
```
Character OOB access is silent because a common package idiom is to check for the absence of a column with `is.null(df[[var]])`.
```{r double-bracket-j-oob-character, dftbl = TRUE}
df[["x"]]
```
### Definition of `x$name`
`x$name` and `x$"name"` are equal to `x[["name"]]`.
```{r dollar-equivalent-to-subset, dftbl = TRUE}
df$n
df$"n"
df[["n"]]
```
```{r dollar-equivalent-to-subset-detail, dftbl = TRUE, include = eval_details, eval = eval_details}
identical(df$li, df[["li"]])
identical(df2$tb, df2[["tb"]])
identical(df2$m, df2[["m"]])
```
Unlike data frames, tibbles do not partially match names.
Because `df$x` is rarely used in packages, it can raise a warning:
```{r dollar-equivalent-to-subset-pmatch, dftbl = TRUE}
df$l
df$not_present
```
## Column subsetting
### Definition of `x[j]`
`j` is converted to an integer vector by `vec_as_index(j, ncol(x), names = names(x))`.
Then `x[c(j_1, j_2, ..., j_n)]` is equivalent to `tibble(x[[j_1]], x[[j_2]], ..., x[[j_3]])`, keeping the corresponding column names.
This implies that `j` must be a numeric or character vector, or a logical vector with length 1 or `ncol(x)`.[^subset-extract-commute]
[^subset-extract-commute]: `x[j][[jj]]` is equal to `x[[ j[[jj]] ]]`, in particular `x[j][[1]]` is equal to `x[[j]]` for scalar numeric or integer `j`.
```{r bracket-j-definition, dftbl = TRUE}
df[1:2]
```
When subsetting repeated indexes, the resulting column names are undefined, do not rely on them.
```{r bracket-j-duplication, dftbl = TRUE}
df[c(1, 1)]
```
For tibbles with repeated column names, subsetting by name uses the first matching column.
`nrow(df[j])` equals `nrow(df)`.
```{r bracket-j-empty, dftbl = TRUE}
df[integer()]
```
Tibbles support indexing by a logical matrix, but only if all values in the returned vector are compatible.
```{r bracket-j-logical-matrix, dftbl = TRUE}
df[is.na(df)]
df[!is.na(df)]
```
### Definition of `x[, j]`
`x[, j]` is equal to `x[j]`.
Tibbles do not perform column extraction if `x[j]` would yield a single column.
```{r bracket-missing-i, dftbl = TRUE}
df[, 1]
df[, 1:2]
```
```{r bracket-missing-i-detail, dftbl = TRUE, include = eval_details, eval = eval_details}
identical(df[, 2:3], df[2:3])
identical(df2[, 1:2], df2[1:2])
```
### Definition of `x[, j, drop = TRUE]`
For backward compatiblity, `x[, j, drop = TRUE]` performs column __extraction__, returning `x[j][[1]]` when `ncol(x[j])` is 1.
```{r bracket-always-returns-tibble-drop, dftbl = TRUE}
df[, 1, drop = TRUE]
```
```{r bracket-always-returns-tibble-drop-detail, dftbl = TRUE, include = eval_details, eval = eval_details}
identical(df[, 3, drop = TRUE], df[[3]])
identical(df2[, 1, drop = TRUE], df2[[1]])
identical(df2[, 2, drop = TRUE], df2[[2]])
```
## Row subsetting
### Definition of `x[i, ]`
`x[i, ]` is equal to `tibble(vec_slice(x[[1]], i), vec_slice(x[[2]], i), ...)`.[^row-subset-efficiency]
[^row-subset-efficiency]: Row subsetting `x[i, ]` is not defined in terms of `x[[j]][i]` because that definition does not generalise to matrix and data frame columns.
For efficiency and backward compatibility, `i` is converted to an integer vector by `vec_as_index(i, nrow(x))` first.
```{r bracket-i, dftbl = TRUE}
df[3, ]
```
This means that `i` must be a numeric vector, or a logical vector of length `nrow(x)` or 1.
For compatibility, `i` can also be a character vector containing positive numbers.
```{r bracket-i-wrong-type, dftbl = TRUE}
df[mean, ]
df[list(1), ]
df["1", ]
```
Exception: OOB values generate warnings instead of errors:
```{r bracket-i-oob, dftbl = TRUE}
df[10, ]
df["x", ]
```
Unlike data frames, only logical vectors of length 1 are recycled.
<!-- TODO: should this be an error? #648 -->
```{r bracket-i-recycle, dftbl = TRUE}
df[c(TRUE, FALSE), ]
```
NB: scalar logicals are recycled, but scalar numerics are not.
That makes the `x[NA, ]` and `x[NA_integer_, ]` return different results.
```{r bracket-i-na, dftbl = TRUE}
df[NA, ]
df[NA_integer_, ]
```
### Definition of `x[i, , drop = TRUE]`
`drop = TRUE` has no effect when not selecting a single row:
```{r bracket-i-drop, dftbl = TRUE}
df[1, , drop = TRUE]
```
<!-- TODO: soft-deprecate -->
## Row and column subsetting
### Definition of `x[]` and `x[,]`
`x[]` and `x[,]` are equivalent to `x`.[^bracket-comma]
[^bracket-comma]: `x[,]` is equivalent to `x[]` because `x[, j]` is equivalent to `x[j]`.
### Definition of `x[i, j]`
`x[i, j]` is equal to `x[i, ][j]`.[^bracket-flip]
[^bracket-flip]: A more efficient implementation of `x[i, j]` would forward to `x[j][i, ]`.
```{r bracket-i-j-equivalent-to-i-subset-then-j, dftbl = TRUE, include = eval_details, eval = eval_details}
df[1, 1]
df[1, ][1]
identical(df[1, 2:3], df[2:3][1, ])
identical(df[2:3, 1], df[1][2:3, ])
identical(df2[2:3, 1:2], df2[1:2][2:3, ])
```
### Definition of `x[[i, j]]`
`i` must be a numeric vector of length 1.
`x[[i, j]]` is equal to `x[i, ][[j]]`, or `vctrs::vec_slice(x[[j]], i)`.[^bracket2-flip]
[^bracket2-flip]: Cell subsetting `x[[i, j]]` is not defined in terms of `x[[j]][[i]]` because that definition does not generalise to list, matrix and data frame columns.
A more efficient implementation of `x[[i, j]]` would check that `j` is a scalar and forward to `x[i, j][[1]]`.
```{r bracket-bracket-i-j-equivalent-to-i-subset-then-j}
df[[1, 1]]
df[[1, 3]]
```
This implies that `j` must be a numeric or character vector of length 1.
NB: `vec_size(x[[i, j]])` always equals 1.
Unlike `x[i, ]`, `x[[i, ]]` is not valid.
## Column update
### Definition of `x[[j]] <- a`
If `a` is a vector then `x[[j]] <- a` replaces the `j`th column with value `a`.
```{r double-bracket-assign-definition, dftbl = TRUE, include = eval_details, eval = eval_details}
with_df(df[[1]] <- 0)
with_df(df[[3]] <- 4:1)
with_df2(df2[[1]] <- 0)
with_df2(df2[[2]] <- 4:1)
```
```{r double-bracket-assign-requires-scalar-j-index, dftbl = TRUE, include = eval_details, eval = eval_details}
with_df(df[[1]] <- 0)
with_df(df[["c"]] <- 0)
```
```{r double-bracket-assign-requires-scalar-j-index-error, dftbl = TRUE, include = eval_details, eval = eval_details}
with_df(df[[TRUE]] <- 0)
with_df(df[[1:3]] <- 0)
with_df(df[[c("n", "c")]] <- 0)
with_df(df[[FALSE]] <- 0)
with_df(df[[1:2]] <- 0)
with_df(df[[NA_integer_]] <- 0)
with_df(df[[NA]] <- 0)
with_df(df[[NA_character_]] <- 0)
```
`a` is recycled to the same size as `x` so must have size `nrow(x)` or 1.
(The only exception is when `a` is `NULL`, as described below.)
Recycling also works for list, data frame, and matrix columns.
```{r double-bracket-assign-recycle, dftbl = TRUE}
with_df(df[["li"]] <- list(0))
with_df2(df2[["tb"]] <- df[1, ])
with_df2(df2[["m"]] <- df2[["m"]][1, , drop = FALSE])
```
```{r double-bracket-requires-size, dftbl = TRUE, include = eval_details, eval = eval_details}
with_df(df[[1]] <- 1)
with_df(df[[1]] <- 4:1)
with_df(df[[1]] <- 3:1)
with_df(df[[1]] <- 2:1)
```
`j` must be a scalar numeric or a string, and cannot be `NA`.
If `j` is OOB, a new column is added on the right hand side, with name repair if needed.
```{r double-bracket-assign-supports-new, dftbl = TRUE}
with_df(df[["x"]] <- 0)
with_df(df[[4]] <- 0)
with_df(df[[5]] <- 0)
```
<!-- HW: should we permitted oob assignment with numeric j? It's a bit weird to create a column with unknonw column -->
`df[[j]] <- a` replaces the complete column so can change the type.
```{r double-bracket-assign-supports-type-change, dftbl = TRUE, include = eval_details, eval = eval_details}
with_df(df[[1]] <- df[[2]])
with_df(df[[2]] <- df[[3]])
with_df(df[[3]] <- df2[[1]])
with_df2(df2[[1]] <- df2[[2]])
with_df2(df2[[2]] <- df[[1]])
```
`[[<-` supports removing a column by assigning `NULL` to it.
```{r double-bracket-assign-supports-null, dftbl = TRUE, include = eval_details, eval = eval_details}
with_df(df[[1]] <- NULL)
with_df2(df2[[2]] <- NULL)
```
Removing a nonexistent column is a no-op.
```{r double-bracket-assign-supports-null-unknown, dftbl = TRUE, include = eval_details, eval = eval_details}
with_df(df[["q"]] <- NULL)
```
### Definition of `x$name <- a`
`x$name <- a` and `x$"name" <- a` are equivalent to `x[["name"]] <- a`.[^column-assign-symmetry]
[^column-assign-symmetry]: `$` behaves almost completely symmetrically to `[[` when comparing subsetting and subassignment.
```{r dollar-equivalent-to-subset-assign, dftbl = TRUE}
with_df(df$n <- 0)
with_df(df[["n"]] <- 0)
```
```{r dollar-equivalent-to-subset-assign-detail, dftbl = TRUE, include = eval_details, eval = eval_details}
with_df(df$"n" <- 0)
```
`$<-` does not perform partial matching.
```{r dollar-equivalent-to-subset-assign-pmatch, dftbl = TRUE}
with_df(df$l <- 0)
with_df(df[["l"]] <- 0)
```
## Column subassignment: `x[j] <- a`
* If `j` is missing, it's replaced with `seq_along(x)`
* If `j` is logical vector, it's converted to numeric with `seq_along(x)[j]`.
### `a` is a list or data frame
If `inherits(a, "list")` or `inherits(a, "data.frame")` is `TRUE`, then `x[j] <- a` is equivalent to `x[[j[[1]]] <- a[[1]]`, `x[[j[[2]]]] <- a[[2]]`, ...
```{r bracket-assign-def, dftbl = TRUE}
with_df(df[1:2] <- list("x", 4:1))
with_df(df[c("li", "x", "c")] <- list("x", 4:1, NULL))
```
If `length(a)` equals 1, then it is recycled to the same length as `j`.
```{r bracket-assign-recycles, dftbl = TRUE}
with_df(df[1:2] <- list(1))
with_df(df[1:2] <- list(0, 0, 0))
with_df(df[1:3] <- list(0, 0))
```
An attempt to update the same column twice gives an error.
```{r, bracket-assign-multiple, dftbl = TRUE}
with_df(df[c(1, 1)] <- list(1, 2))
```
If `a` contains `NULL` values, the corresponding columns are removed *after* updating (i.e. position indexes refer to columns before any modifications).
```{r bracket-assign-remove, dftbl = TRUE}
with_df(df[1:2] <- list(NULL, 4:1))
```
`NA` indexes are not supported.
```{r bracket-assign-na, dftbl = TRUE, include = eval_details, eval = eval_details}
with_df(df[NA] <- list("x"))
with_df(df[NA_integer_] <- list("x"))
with_df(df[NA_character_] <- list("x"))
```
Just like column updates, `[<-` supports changing the type of an existing column.
```{r bracket-assign-supports-type-change, dftbl = TRUE, include = eval_details, eval = eval_details}
with_df(df[1] <- df[2])
with_df(df[2] <- df[3])
with_df(df[3] <- df2[1])
with_df2(df2[1] <- df2[2])
with_df2(df2[2] <- df[1])
```
Appending columns at the end (without gaps) is supported.
The name of new columns is determined by the LHS, the RHS, or by name repair (in that order of precedence).
```{r bracket-assign-names, dftbl = TRUE}
with_df(df[c("x", "y")] <- tibble("x", x = 4:1))
with_df(df[3:4] <- list("x", x = 4:1))
with_df(df[4] <- list(4:1))
with_df(df[5] <- list(4:1))
```
Tibbles support indexing by a logical matrix, but only for a scalar RHS, and if all columns updated are compatible with the value assigned.
```{r bracket-j-assign-logical-matrix, dftbl = TRUE}
with_df(df[is.na(df)] <- 4)
with_df(df[is.na(df)] <- 1:2)
with_df(df[matrix(c(rep(TRUE, 5), rep(FALSE, 7)), ncol = 3)] <- 4)
```
### `a` is a matrix or array
If `is.matrix(a)`, then `a` is coerced to a data frame with `as.data.frame()` before assigning.
If rows are assigned, the matrix type must be compatible with all columns.
If `is.array(a)` and `any(dim(a)[-1:-2] != 1)`, an error is thrown.
```{r bracket-assign-array, dftbl = TRUE}
with_df(df[1:2] <- matrix(8:1, ncol = 2))
with_df(df[1:3, 1:2] <- matrix(6:1, ncol = 2))
with_df(df[1:2] <- array(4:1, dim = c(4, 1, 1)))
with_df(df[1:2] <- array(8:1, dim = c(4, 2, 1)))
with_df(df[1:2] <- array(8:1, dim = c(2, 1, 4)))
with_df(df[1:2] <- array(8:1, dim = c(4, 1, 2)))
```
### `a` is another type of vector
If `vec_is(a)`, then `x[j] <- a` is equivalent to `x[j] <- list(a)`.
This is primarily provided for backward compatbility.
```{r bracket-assign-wraps, dftbl = TRUE}
with_df(df[1] <- 0)
with_df(df[1] <- list(0))
```
Matrices must be wrapped in `list()` before assignment to create a matrix column.
```{r bracket-assign-matrix, dftbl = TRUE}
with_df(df[1] <- list(matrix(1:8, ncol = 2)))
with_df(df[1:2] <- list(matrix(1:8, ncol = 2)))
```
### `a` is `NULL`
Entire columns can be removed.
Specifying `i` is an error.
```{r bracket-assign-null, dftbl = TRUE}
with_df(df[1] <- NULL)
with_df(df[, 2:3] <- NULL)
with_df(df[1, 2:3] <- NULL)
```
### `a` is not a vector
Any other type for `a` is an error.
Note that if `is.list(a)` is `TRUE`, but `inherits(a, "list")` is `FALSE`, then `a` is considered to be a scalar.
See `?vec_is` and `?vec_proxy` for details.
```{r bracket-assign-non-vector, dftbl = TRUE}
with_df(df[1] <- mean)
with_df(df[1] <- lm(mpg ~ wt, data = mtcars))
```
<!-- HW: we need better error messages for these cases -->
## Row subassignment: `x[i, ] <- list(...)`
`x[i, ] <- a` is the same as `vec_slice(x[[j_1]], i) <- a[[1]]`, `vec_slice(x[[j_2]], i) <- a[[2]]`, ... .[^row-assign-symmetry]
[^row-assign-symmetry]: `x[i, ]` is symmetrically for subset and subassignment.
```{r bracket-i-assign, dftbl = TRUE}
with_df(df[2:3, ] <- df[1, ])
with_df(df[c(FALSE, TRUE, TRUE, FALSE), ] <- df[1, ])
```
```{r bracket-i-assign-detail, dftbl = TRUE, include = eval_details, eval = eval_details}
with_df(df[0:2, ] <- df[1, ])
with_df(df[0, ] <- df[1, ])
with_df(df[-2, ] <- df[1, ])
with_df(df[-1:2, ] <- df[1, ])
with_df(df[NA_integer_, ] <- df[1, ])
with_df2(df2[NA_integer_, ] <- df2[1, ])
with_df(df[TRUE, ] <- df[1, ])
with_df(df[FALSE, ] <- df[1, ])
with_df(df[NA, ] <- df[1, ])
```
Only values of size one can be recycled.
```{r bracket-i-recycle-assign, dftbl = TRUE}
with_df(df[2:3, ] <- df[1, ])
with_df(df[2:3, ] <- list(df$n[1], df$c[1:2], df$li[1]))
with_df(df[2:4, ] <- df[1:2, ])
```
```{r bracket-i-recycle-assign-detail, dftbl = TRUE, include = eval_details, eval = eval_details}
with_df2(df2[2:4, ] <- df2[1, ])
with_df2(df2[2:4, ] <- df2[2:3, ])
```
For compatibility, only a warning is issued for indexing beyond the number of rows.
Appending rows right at the end of the existing data is supported, without warning.
```{r bracket-i-oob-num, dftbl = TRUE}
with_df(df[5, ] <- df[1, ])
with_df(df[5:7, ] <- df[1, ])
with_df(df[6, ] <- df[1, ])
with_df(df[-5, ] <- df[1, ])
with_df(df[-(5:7), ] <- df[1, ])
with_df(df[-6, ] <- df[1, ])
```
For compatibility, `i` can also be a character vector containing positive numbers.
```{r bracket-i-character, dftbl = TRUE}
with_df(df[as.character(1:3), ] <- df[1, ])
```
```{r bracket-i-character-detail, dftbl = TRUE, include = eval_details, eval = eval_details}
with_df(df[as.character(-(1:3)), ] <- df[1, ])
with_df(df[as.character(3:5), ] <- df[1, ])
with_df(df[as.character(-(3:5)), ] <- df[1, ])
with_df(df[NA_character_, ] <- df[1, ])
```
## Row and column subassignment
### Definition of `x[i, j] <- a`
`x[i, j] <- a` is equivalent to `x[i, ][j] <- a`.[^bracket-assign-flip]
[^bracket-assign-flip]: `x[i, j]` is symmetrically for subsetting and subassignment.
A more efficient implementation of `x[i, j] <- a` would forward to `x[j][i, ] <- a`.
Subassignment to `x[i, j]` is stricter for tibbles than for data frames.
`x[i, j] <- a` can't change the data type of existing columns.
```{r bracket-i-data-type, dftbl = TRUE}
with_df(df[2:3, 1] <- df[1:2, 2])
with_df(df[2:3, 2] <- df[1:2, 3])
with_df(df[2:3, 3] <- df2[1:2, 1])
with_df2(df2[2:3, 1] <- df2[1:2, 2])
with_df2(df2[2:3, 2] <- df[1:2, 1])
```
A notable exception is the population of a column full of `NA` (which is of type `logical`), or the use of `NA` on the right-hand side of the assignment.
```{r bracket-i-j-na-init, dftbl = TRUE}
with_df({df$x <- NA; df[2:3, "x"] <- 3:2})
with_df({df[2:3, 2:3] <- NA})
```
For programming, it is always safer (and faster) to use the correct type of `NA` to initialize columns.
```{r bracket-i-j-typed-na-init, dftbl = TRUE}
with_df({df$x <- NA_integer_; df[2:3, "x"] <- 3:2})
```
For new columns, `x[i, j] <- a` fills the unassigned rows with `NA`.
```{r subassign-ij-new-column, dftbl = TRUE}
with_df(df[2:3, "n"] <- 1)
with_df(df[2:3, "x"] <- 1)
with_df(df[2:3, "n"] <- NULL)
```
Likewise, for new rows, `x[i, j] <- a` fills the unassigned columns with `NA`.
```{r append-rows-only-all-columns, dftbl = TRUE}
with_df(df[5, "n"] <- list(0L))
```
### Definition of `x[[i, j]] <- a`
`i` must be a numeric vector of length 1.
`x[[i, j]] <- a` is equivalent to `x[i, ][[j]] <- a`.[^double-bracket-ij-symmetry]
[^double-bracket-ij-symmetry]: `x[[i, j]]` is symmetrically for subsetting and subassignment.
An efficient implementation would check that `i` and `j` are scalar and forward to `x[i, j][[1]] <- a`.
```{r double-bracket-i-j-equivalent-to-row-subset-then-j, dftbl = TRUE, include = eval_details, eval = eval_details}
with_df(df[[1, 1]] <- 0)
with_df(df[1, ][[1]] <- 0)
with_df(df[[1, 3]] <- list(NULL))
with_df(df[1, ][[3]] <- list(NULL))
with_df2(df2[[1, 1]] <- df[1, ])
with_df2(df2[1, ][[1]] <- df[1, ])
with_df2(df2[[1, 2]] <- t(1:4))
with_df2(df2[1, ][[2]] <- t(1:4))
df[[1:2, 1]]
with_df(df[[1:2, 1]] <- 0)
```
NB: `vec_size(a)` must equal 1.
Unlike `x[i, ] <-`, `x[[i, ]] <-` is not valid.
```{r check, dftbl = TRUE, include = FALSE}
stopifnot(identical(df, new_df()))
```
|