File: subassign.Rmd

package info (click to toggle)
r-cran-tibble 3.1.8%2Bdfsg-1
  • links: PTS, VCS
  • area: main
  • in suites: bookworm
  • size: 2,008 kB
  • sloc: ansic: 317; sh: 10; makefile: 5
file content (325 lines) | stat: -rw-r--r-- 8,597 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
---
title: "Subassignment"
output: rmarkdown::html_vignette
vignette: >
  %\VignetteIndexEntry{subassign}
  %\VignetteEngine{knitr::rmarkdown}
  %\VignetteEncoding{UTF-8}
---

<style type="text/css">
.dftbl {
    width: 100%;
    table-layout: fixed;
    display: inline-table;
}

.error pre code {
    color: red;
}

.warning pre code {
    color: violet;
}
</style>

```{r, include = FALSE}
knitr::opts_chunk$set(
  error = TRUE,
  collapse = TRUE,
  comment = "#>"
)

tibble:::set_dftbl_hooks()

options(
  lifecycle_disable_warnings = FALSE,
  lifecycle_verbose_soft_deprecation = TRUE,
  lifecycle_repeat_warnings = TRUE
)
```

This vignette is an attempt to provide a comprehensive overview over all subassignment operations, highlighting where the tibble implementation differs from the data frame implementation.

```{r setup}
library(tibble)

new_df <- function() {
  df <- data.frame(a = 1:4)
  df$b <- letters[5:8]
  df$cd <- list(9, 10:11, 12:14, "text")
  df
}

new_tbl <- function() {
  as_tibble(new_df())
}
```

Results of the same code for data frames and tibbles are presented side by side:

```{r show, dftbl = TRUE, dftbl_always = TRUE}
new_df()
```

In the following, if the results are identical (after converting to a data frame if necessary), only the tibble result is shown, as in the example below.
This allows to spot differences easier.

```{r show-compare, dftbl = TRUE}
new_df()
```

For subassignment, we need a fresh copy of the data for each test.
The `with_*()` functions allow for a more concise notation
(`with_tbl()` omitted here for brevity):

```{r with-df-def}
with_df <- function(code, verbose = FALSE) {
  code <- rlang::enexpr(code)
  
  full_code <- rlang::quo({
    df <- new_df()
    !!code
    df
  })
  if (verbose) rlang::expr_print(rlang::quo_get_expr(full_code))
  rlang::eval_tidy(full_code)
}
```


```{r with-tbl-def, include = FALSE}
with_tbl <- function(code, verbose = FALSE) {
  code <- rlang::enexpr(code)
  
  full_code <- rlang::quo({
    tbl <- new_tbl()
    !!code
    tbl
  })
  if (verbose) rlang::expr_print(rlang::quo_get_expr(full_code))
  rlang::eval_tidy(full_code)
}
```

This function takes an assignment expression and executes it on a fresh copy of the data.
The first example prints what's really executed, further examples omit this output.

```{r with-demo, dftbl = TRUE}
with_df(df$a <- rev(df$a), verbose = TRUE)
```


## $<-

### Scalars and full length

Assigning a scalar or a full-length vector to a column consistently overwrites existing data or appends a new column at the end. Partial matching doesn't happen:

```{r dollar-assign-scalar, dftbl = TRUE}
with_df(df$a <- 1)
with_df(df$b <- 1)
with_df(df$c <- 1)
with_df(df$cd <- 1)
```

```{r dollar-assign-full, dftbl = TRUE}
with_df(df$a <- 4:1)
with_df(df$b <- 4:1)
with_df(df$c <- 4:1)
with_df(df$cd <- 4:1)
```

### Recycling

Tibbles allow recycling only for vectors of length 1 or of the same length as the data.

```{r dollar-assign-recycle, dftbl = TRUE}
with_df(df$a <- 1:2)
with_df(df$a <- 1:3)
with_df(df$a <- 1:5)
with_df(df$c <- 1:2)
```



### Subset assignment

Updating parts of a column extracted by `$` is the responsibility of the column vector.
Tibbles can't control what happens after `$` has returned.

```{r dollar-assign-subset, dftbl = TRUE}
with_df(df$a[1:2] <- 4:3)
with_df(df$b[1:2] <- 4:3)
with_df(df$c[1:2] <- 4:3)
with_df(df$cd[1:2] <- 4:3)
with_df(df$a[1:3] <- 4:3)
with_df(df$a[1:4] <- 4:3)
```

For columns of the stricter `"vctrs_vctr"` class, this class implements the check, which then works identically for data frames and tibbles:

```{r vctrs}
with_df({ df$v = vctrs::new_vctr(1:4); df$v[1:2] <- vctrs::new_vctr(4:3)})
with_df({ df$v = vctrs::new_vctr(1:4); df$v[1:2] <- vctrs::new_vctr(letters[4:3])})
```

## [[<-

### Scalars and full length

As with `$` subsetting, columns are consistently overwritten, and partial matching doesn't occur.
Numeric indexing is supported, but tibbles don't support creation of new numbered columns for a good reason.

```{r double-bracket-assign-col-scalar, dftbl = TRUE}
with_df(df[["a"]] <- 1)
with_df(df[["a"]] <- "x")
with_df(df[["b"]] <- "x")
with_df(df[["c"]] <- "x")
with_df(df[["cd"]] <- "x")
with_df(df[[1]] <- "x")
with_df(df[[2]] <- "x")
with_df(df[[4]] <- "x")
with_df(df[[5]] <- "x")
```

```{r double-bracket-assign-col-full, dftbl = TRUE}
with_df(df[["a"]] <- 4:1)
with_df(df[["a"]] <- letters[4:1])
with_df(df[["b"]] <- letters[4:1])
with_df(df[["c"]] <- letters[4:1])
with_df(df[["cd"]] <- letters[4:1])
```

### Cells

Tibbles are stricter when updating single cells, the value must be coercible to the existing contents.
Updating a list column requires the contents to be wrapped in a list, consistently with `[[` subsetting which returns a list if a cell in a list column is accessed:

```{r double-bracket-assign-cell, dftbl = TRUE}
with_df(df[[2, "a"]] <- 1)
with_df(df[[2, "a"]] <- 1.5)
with_df(df[[2, "a"]] <- "x")
with_df(df[[2, "b"]] <- "x")
with_df(df[[2, 1]] <- "x")
with_df(df[[2, 2]] <- "x")
with_df(df[[2, "cd"]] <- "x")
with_df(df[[2, "cd"]] <- list("x"))
with_df(df[[2, "c"]] <- "x")
with_df(df[[1:2, "cd"]] <- "x")
with_df(df[[1:2, "c"]] <- "x")
with_df(df[[2, c("cd", "d")]] <- "x")
```

## [<-

### Scalars

```{r bracket-assign-scalar-col, dftbl = TRUE}
with_df(df[2, "a"] <- 1)
with_df(df[2, "a"] <- 1.5)
with_df(df[2, "a"] <- "x")
with_df(df[2, "b"] <- "x")
with_df(df[2, "cd"] <- "x")
with_df(df[2, "cd"] <- list("x"))
with_df(df[2, "c"] <- "x")
with_df(df[2, 1] <- "x")
with_df(df[2, 2] <- "x")
with_df(df[2, 3] <- "x")
with_df(df[2, 4] <- "x")
```

### Full length columns

```{r bracket-assign-full-col, dftbl = TRUE}
with_df(df[, "a"] <- 4:1)
with_df(df[, "b"] <- 4:1)
with_df(df[, "c"] <- 4:1)
with_df(df[, "cd"] <- 4:1)
with_df(df[, 1] <- 4:1)
with_df(df[, 2] <- 4:1)
with_df(df[, 3] <- 4:1)
with_df(df[, 4] <- 4:1)
with_df(df[, "a"] <- 1)
with_df(df[, "b"] <- 1)
with_df(df[, "c"] <- 1)
with_df(df[, "cd"] <- 1)
with_df(df[, 1] <- 1)
with_df(df[, 2] <- 1)
with_df(df[, 3] <- 1)
with_df(df[, 4] <- 1)
```

### Multiple full length columns

```{r bracket-assign-full-multicol, dftbl = TRUE}
with_df(df[, c("a", "b")] <- 4:1)
with_df(df[, c("a", "b")] <- 1)
with_df(df[, c("a", "b")] <- data.frame(a = 4:1, b = letters[4:1]))
with_df(df[, c("a", "b")] <- data.frame(b = 4:1, a = letters[4:1]))
with_df(df[, c("a", "b")] <- data.frame(c = 4:1, d = letters[4:1]))
with_df(df[, c("a", "b")] <- data.frame(a = 4:1))
with_df(df[, c("a", "b")] <- data.frame(a = 4:1, b = letters[4:1], c = 1:4))
with_df(df[, c("a", "b")] <- data.frame(4:1, 1))
with_df(df[, c("a", "b", "c")] <- data.frame(4:1, letters[4:1]))
with_df(df[, c("a", "b", "cd")] <- data.frame(4:1, letters[4:1]))
```

### Full length rows

```{r bracket-assign-full-row, dftbl = TRUE}
with_df(df[2, ] <- 1)
with_df(df[2, ] <- "x")
with_df(df[2, ] <- tibble(a = 1, b = "x"))
with_df(df[2, ] <- tibble(a = 1, b = "x", c = list("y")))
with_df(df[2, ] <- tibble(a = 1, b = "x", c = list("y"), d = "z"))
with_df(df[0, ] <- tibble(a = 1, b = "x", c = list("y")))
with_df(df[5, ] <- tibble(a = 1, b = "x", c = list("y")))
```

### Multiple full length rows

```{r bracket-assign-full-multirow, dftbl = TRUE}
with_df(df[2:3, ] <- 1)
with_df(df[2:3, ] <- 1:2)
with_df(df[2:3, ] <- c("x", "y"))
with_df(df[2:3, ] <- tibble(a = 1:2, b = c("x", "y")))
with_df(df[2:3, ] <- tibble(a = 1, b = "x", c = list("y")))
with_df(df[2:3, ] <- tibble(a = 1:2, b = "x", c = list("y")))
with_df(df[2:3, ] <- tibble(a = 1, b = "x", c = list("y"), d = "z"))
with_df(df[-(1:2), ] <- tibble(a = 1:2, b = "x", c = list("y")))
with_df(df[0:1, ] <- tibble(a = 1:2, b = "x", c = list("y")))
with_df(df[4:5, ] <- tibble(a = 1:2, b = "x", c = list("y")))
```

### Unspecified

```{r bracket-assign-unspecified, dftbl = TRUE}
with_df(df[] <- 1)
with_df(df[] <- 4:1)
with_df(df[] <- 3:1)
with_df(df[] <- 5:1)
with_df(df[] <- data.frame(1, "x"))
with_df(df[] <- data.frame(4:1, "x", 2))
with_df(df[] <- data.frame(1, "x", 2))
with_df(df[] <- data.frame(1, "x", 2, 3))
with_df(df[] <- df)
with_df(df[,] <- 1)
with_df(df[,] <- 4:1)
with_df(df[,] <- 3:1)
with_df(df[,] <- 5:1)
with_df(df[,] <- data.frame(1, "x"))
with_df(df[,] <- data.frame(4:1, "x", 2))
with_df(df[,] <- data.frame(1, "x", 2))
with_df(df[,] <- data.frame(1, "x", 2, 3))
with_df(df[,] <- df)
```

### Subset assignment

Due to tibble's default of `drop = FALSE`, updating a portion of a `[` subset is still safe, because tibble is still in control.
Only one example is given here.

```{r bracket-assign-subset, dftbl = TRUE}
with_df(df["a"][1, ] <- "b")
```