File: subset.Rmd

package info (click to toggle)
r-cran-tibble 3.1.8%2Bdfsg-1
  • links: PTS, VCS
  • area: main
  • in suites: bookworm
  • size: 2,008 kB
  • sloc: ansic: 317; sh: 10; makefile: 5
file content (257 lines) | stat: -rw-r--r-- 5,257 bytes parent folder | download | duplicates (3)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
---
title: "Subsetting"
output: rmarkdown::html_vignette
vignette: >
  %\VignetteIndexEntry{subset}
  %\VignetteEngine{knitr::rmarkdown}
  %\VignetteEncoding{UTF-8}
---

<style type="text/css">
.dftbl {
    width: 100%;
    table-layout: fixed;
    display: inline-table;
}

.error pre code {
    color: red;
}

.warning pre code {
    color: violet;
}
</style>

```{r, include = FALSE}
knitr::opts_chunk$set(
  error = TRUE,
  collapse = TRUE,
  comment = "#>"
)

tibble:::set_dftbl_hooks()

options(
  lifecycle_disable_warnings = FALSE,
  lifecycle_verbose_soft_deprecation = TRUE,
  lifecycle_repeat_warnings = TRUE
)
```

There are many, many ways to subset data frames and tibbles.

<figure>
[![Alignment](alignment.png "Alignment chart"){ width=100% }](https://twitter.com/skyetetra/status/1160012260456062977)
<figcaption>
Drawing by [Jacqueline Nolis](https://twitter.com/skyetetra/status/1160012260456062977)
</figcaption>
</figure>

This vignette is an attempt to provide a comprehensive overview over the behavior of the subsetting operators `$`, `[[` and `[`, highlighting where the tibble implementation differs from the data frame implementation.

```{r setup}
library(tibble)

new_df <- function() {
  df <- data.frame(a = 1:4)
  df$b <- letters[5:8]
  df$cd <- list(9, 10:11, 12:14, "text")
  df
}

new_tbl <- function() {
  as_tibble(new_df())
}
```

Results of the same code for data frames and tibbles are presented side by side:

```{r show, dftbl = TRUE, dftbl_always = TRUE}
new_df()
```

In the following, if the results are identical (after converting to a data frame if necessary), only the tibble result is shown, as in the example below.
This allows to spot differences easier.

```{r show-compare, dftbl = TRUE}
new_df()
```

Subsetting operations are read-only.
The same objects are reused in all examples:

```{r ro}
df <- new_df()
tbl <- new_tbl()
```

## $

With `$` subsetting, accessing a missing column gives a warning.
Inexact matching is not supported:

```{r dollar, dftbl = TRUE}
df$a
df$"a"
df$a[2:3]
df$cd
df$c
df$d
```

## [[

The `exact` argument is not supported by tibbles.

```{r double-bracket-col, dftbl = TRUE}
df[["a"]]
df[["cd", exact = TRUE]]
df[["cd", exact = FALSE]]
df[["c", exact = TRUE]]
df[["c", exact = FALSE]]
```

With two indexes, a single element is returned.
List columns are not unpacked by tibbles, the `[[` only unpacks columns.

```{r double-bracket-both, dftbl = TRUE}
df[[2, "a"]]
df[[2, "cd"]]
df[[1:2, "cd"]]
df[[2, "c"]]
df[[1:2, "c"]]
```

Exotic variants like recursive indexing are deprecated for tibbles.

```{r double-bracket-exotic, dftbl = TRUE}
df[[c(1, 2)]]
```

## [

With `[` subsetting, tibbles always return a tibble.
The `drop` argument is supported but has different defaults:

```{r bracket-col-one, dftbl = TRUE}
df["a"]
df["a", drop = FALSE]
df["a", drop = TRUE]
df[1]
df[0]
df[4]
df[NA]
df[NA_character_]
df[NA_integer_]
```

The same examples are repeated for two-dimensional indexing when omitting the row index:


```{r bracket-col-two, dftbl = TRUE}
df[, "a"]
df[, "a", drop = FALSE]
df[, "a", drop = TRUE]
df[, 1]
df[, 0]
df[, 4]
df[, NA]
df[, NA_character_]
df[, NA_integer_]
```

Multiple columns can be queried by passing a vector of column indexes (names, positions, or even a logical vector).
With the latter option, tibbles are a tad stricter:

```{r bracket-col-multi-one, dftbl = TRUE}
df[c("a", "b")]
df[character()]
df[1:2]
df[1:3]
df[1:4]
df[0:2]
df[-1:2]
df[-1]
df[-(1:2)]
df[integer()]
df[TRUE]
df[FALSE]
df[c(TRUE, TRUE, FALSE)]
df[c(FALSE, TRUE, FALSE)]
df[c(FALSE, TRUE)]
df[c(FALSE, TRUE, FALSE, TRUE)]
```

The same examples are repeated for two-dimensional indexing when omitting the row index:

```{r bracket-col-multi-two, dftbl = TRUE}
df[, c("a", "b")]
df[, character()]
df[, 1:2]
df[, 1:3]
df[, 1:4]
df[, 0:2]
df[, -1:2]
df[, -1]
df[, -(1:2)]
df[, integer()]
df[, TRUE]
df[, FALSE]
df[, c(TRUE, TRUE, FALSE)]
df[, c(FALSE, TRUE, FALSE)]
df[, c(FALSE, TRUE)]
df[, c(FALSE, TRUE, FALSE, TRUE)]
```

Row subsetting with integer indexes works almost identical.
Out-of-bounds subsetting is not recommended and may lead to an error in future versions.
Another special case is subsetting with `[1, , drop = TRUE]` where the data frame implementation returns a list.

```{r bracket-row-integer, dftbl = TRUE}
df[1, ]
df[1, , drop = TRUE]
df[1:2, ]
df[0, ]
df[integer(), ]
df[5, ]
df[4:5, ]
df[-1, ]
df[-1:2, ]
df[NA, ]
df[NA_integer_, ]
df[c(NA, 1), ]
```

Row subsetting with logical indexes also works almost identical, the index vector must have length one or the number of rows with tibbles.

```{r bracket-row-logical, dftbl = TRUE}
df[TRUE, ]
df[FALSE, ]
df[c(TRUE, FALSE), ]
df[c(TRUE, FALSE, TRUE), ]
df[c(TRUE, FALSE, TRUE, FALSE), ]
df[c(TRUE, FALSE, TRUE, FALSE, TRUE), ]
```

Indexing both row and column works more or less the same, except for `drop`:

```{r bracket-both, dftbl = TRUE}
df[1, "a"]
df[1, "a", drop = FALSE]
df[1, "a", drop = TRUE]
df[1:2, "a"]
df[1:2, "a", drop = FALSE]
df[1:2, "a", drop = TRUE]
df[1, c("a", "b")]
df[1, c("a", "b"), drop = FALSE]
df[1, c("a", "b"), drop = TRUE]
df[1:2, c("a", "b")]
```

Indexes can be omitted altogether, no differences here:

```{r bracket-empty, dftbl = TRUE}
df[]
df[,]
```