1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189
|
% Generated by roxygen2: do not edit by hand
% Please edit documentation in R/tibble.R
\name{tibble}
\alias{tibble}
\alias{tibble_row}
\title{Build a data frame}
\usage{
tibble(
...,
.rows = NULL,
.name_repair = c("check_unique", "unique", "universal", "minimal")
)
tibble_row(
...,
.name_repair = c("check_unique", "unique", "universal", "minimal")
)
}
\arguments{
\item{...}{<\code{\link[rlang:dyn-dots]{dynamic-dots}}>
A set of name-value pairs. These arguments are
processed with \code{\link[rlang:defusing-advanced]{rlang::quos()}} and support unquote via \code{\link{!!}} and
unquote-splice via \code{\link{!!!}}. Use \verb{:=} to create columns that start with a dot.
Arguments are evaluated sequentially.
You can refer to previously created elements directly or using the \link{.data}
pronoun.
To refer explicitly to objects in the calling environment, use \code{\link{!!}} or
\link{.env}, e.g. \code{!!.data} or \code{.env$.data} for the special case of an object
named \code{.data}.}
\item{.rows}{The number of rows, useful to create a 0-column tibble or
just as an additional check.}
\item{.name_repair}{Treatment of problematic column names:
\itemize{
\item \code{"minimal"}: No name repair or checks, beyond basic existence,
\item \code{"unique"}: Make sure names are unique and not empty,
\item \code{"check_unique"}: (default value), no name repair, but check they are
\code{unique},
\item \code{"universal"}: Make the names \code{unique} and syntactic
\item a function: apply custom name repair (e.g., \code{.name_repair = make.names}
for names in the style of base R).
\item A purrr-style anonymous function, see \code{\link[rlang:as_function]{rlang::as_function()}}
}
This argument is passed on as \code{repair} to \code{\link[vctrs:vec_as_names]{vctrs::vec_as_names()}}.
See there for more details on these terms and the strategies used
to enforce them.}
}
\value{
A tibble, which is a colloquial term for an object of class
\code{\link[=tbl_df-class]{tbl_df}}. A \code{\link[=tbl_df-class]{tbl_df}} object is also a data
frame, i.e. it has class \code{data.frame}.
}
\description{
\code{tibble()} constructs a data frame. It is used like \code{\link[base:data.frame]{base::data.frame()}}, but
with a couple notable differences:
\itemize{
\item The returned data frame has the class \code{\link[=tbl_df-class]{tbl_df}}, in
addition to \code{data.frame}. This allows so-called "tibbles" to exhibit some
special behaviour, such as \link[=formatting]{enhanced printing}. Tibbles are
fully described in \code{\link[=tbl_df-class]{tbl_df}}.
\item \code{tibble()} is much lazier than \code{\link[base:data.frame]{base::data.frame()}} in terms of
transforming the user's input.
\itemize{
\item Character vectors are not coerced to factor.
\item List-columns are expressly anticipated and do not require special tricks.
\item Column names are not modified.
\item Inner names in columns are left unchanged.
}
\item \code{tibble()} builds columns sequentially. When defining a column, you can
refer to columns created earlier in the call. Only columns of length one
are recycled.
\item If a column evaluates to a data frame or tibble, it is nested or spliced.
If it evaluates to a matrix or a array, it remains a matrix or array,
respectively.
See examples.
}
\code{tibble_row()} constructs a data frame that is guaranteed to occupy one row.
Vector columns are required to have size one, non-vector columns are wrapped
in a list.
}
\examples{
# Unnamed arguments are named with their expression:
a <- 1:5
tibble(a, a * 2)
# Scalars (vectors of length one) are recycled:
tibble(a, b = a * 2, c = 1)
# Columns are available in subsequent expressions:
tibble(x = runif(10), y = x * 2)
# tibble() never coerces its inputs,
str(tibble(letters))
str(tibble(x = list(diag(1), diag(2))))
# or munges column names (unless requested),
tibble(`a + b` = 1:5)
# but it forces you to take charge of names, if they need repair:
try(tibble(x = 1, x = 2))
tibble(x = 1, x = 2, .name_repair = "unique")
tibble(x = 1, x = 2, .name_repair = "minimal")
## By default, non-syntactic names are allowed,
df <- tibble(`a 1` = 1, `a 2` = 2)
## because you can still index by name:
df[["a 1"]]
df$`a 1`
with(df, `a 1`)
## Syntactic names are easier to work with, though, and you can request them:
df <- tibble(`a 1` = 1, `a 2` = 2, .name_repair = "universal")
df$a.1
## You can specify your own name repair function:
tibble(x = 1, x = 2, .name_repair = make.unique)
fix_names <- function(x) gsub("\\\\s+", "_", x)
tibble(`year 1` = 1, `year 2` = 2, .name_repair = fix_names)
## purrr-style anonymous functions and constants
## are also supported
tibble(x = 1, x = 2, .name_repair = ~ make.names(., unique = TRUE))
tibble(x = 1, x = 2, .name_repair = ~ c("a", "b"))
# Tibbles can contain columns that are tibbles or matrices
# if the number of rows is compatible. Unnamed tibbled are
# spliced, i.e. the inner columns are inserted into the
# tibble under construction.
tibble(
a = 1:3,
tibble(
b = 4:6,
c = 7:9
),
d = tibble(
e = tibble(
f = b
)
)
)
tibble(
a = 1:3,
b = diag(3),
c = cor(trees),
d = Titanic[1:3, , , ]
)
# Data can not contain tibbles or matrices with incompatible number of rows:
try(tibble(a = 1:3, b = tibble(c = 4:7)))
# Use := to create columns with names that start with a dot:
tibble(.dotted := 3)
# This also works, but might break in the future:
tibble(.dotted = 3)
# You can unquote an expression:
x <- 3
tibble(x = 1, y = x)
tibble(x = 1, y = !!x)
# You can splice-unquote a list of quosures and expressions:
tibble(!!!list(x = rlang::quo(1:10), y = quote(x * 2)))
# Use .data, .env and !! to refer explicitly to columns or outside objects
a <- 1
tibble(a = 2, b = a)
tibble(a = 2, b = .data$a)
tibble(a = 2, b = .env$a)
tibble(a = 2, b = !!a)
try(tibble(a = 2, b = .env$bogus))
try(tibble(a = 2, b = !!bogus))
# Use tibble_row() to construct a one-row tibble:
tibble_row(a = 1, lm = lm(Height ~ Girth + Volume, data = trees))
}
\seealso{
Use \code{\link[=as_tibble]{as_tibble()}} to turn an existing object into a tibble. Use
\code{enframe()} to convert a named vector into a tibble. Name repair is
detailed in \code{\link[vctrs:vec_as_names]{vctrs::vec_as_names()}}.
See \link{quasiquotation} for more details on tidy dots semantics,
i.e. exactly how the \code{...} argument is processed.
}
|