File: map.R

package info (click to toggle)
r-cran-tidygraph 1.3.1-2
  • links: PTS, VCS
  • area: main
  • in suites: sid, trixie
  • size: 880 kB
  • sloc: cpp: 41; sh: 13; makefile: 2
file content (529 lines) | stat: -rw-r--r-- 21,608 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
#' Apply a function to nodes in the order of a breath first search
#'
#' These functions allow you to map over the nodes in a graph, by first
#' performing a breath first search on the graph and then mapping over each
#' node in the order they are visited. The mapping function will have access to
#' the result and search statistics for all the nodes between itself and the
#' root in the search. To map over the nodes in the reverse direction use
#' [map_bfs_back()].
#'
#' @details
#' The function provided to `.f` will be called with the following arguments in
#' addition to those supplied through `...`:
#'
#' * `graph`: The full `tbl_graph` object
#' * `node`: The index of the node currently mapped over
#' * `rank`: The rank of the node in the search
#' * `parent`: The index of the node that led to the current node
#' * `before`: The index of the node that was visited before the current node
#' * `after`: The index of the node that was visited after the current node.
#' * `dist`: The distance of the current node from the root
#' * `path`: A table containing `node`, `rank`, `parent`, `before`, `after`,
#'   `dist`, and `result` columns giving the values for each node leading to the
#'   current node. The `result` column will contain the result of the mapping
#'   of each node in a list.
#'
#' Instead of spelling out all of these in the function it is possible to simply
#' name the ones needed and use `...` to catch the rest.
#'
#' @param root The node to start the search from
#'
#' @param mode How should edges be followed? `'out'` only follows outbound
#' edges, `'in'` only follows inbound edges, and `'all'` follows all edges. This
#' parameter is ignored for undirected graphs.
#'
#' @param unreachable Should the search jump to an unvisited node if the search
#' is completed without visiting all nodes.
#'
#' @param .f A function to map over all nodes. See Details
#'
#' @param ... Additional parameters to pass to `.f`
#'
#' @return `map_bfs()` returns a list of the same length as the number of nodes
#' in the graph, in the order matching the node order in the graph (that is, not
#' in the order they are called). `map_bfs_*()` tries to coerce its result into
#' a vector of the classes `logical` (`map_bfs_lgl`), `character`
#' (`map_bfs_chr`), `integer` (`map_bfs_int`), or `double` (`map_bfs_dbl`).
#' These functions will throw an error if they are unsuccesful, so they are type
#' safe.
#'
#' @family node map functions
#'
#' @export
#'
#' @examples
#' # Accumulate values along a search
#' create_tree(40, children = 3, directed = TRUE) %>%
#'   mutate(value = round(runif(40)*100)) %>%
#'   mutate(value_acc = map_bfs_dbl(node_is_root(), .f = function(node, path, ...) {
#'     sum(.N()$value[c(node, path$node)])
#'   }))
map_bfs <- function(root, mode = 'out', unreachable = FALSE, .f, ...) {
  expect_nodes()
  graph <- .G()
  root <- as_node_ind(root, graph)
  dot_params <- list(...)
  search_df <- bfs_df(graph, root, mode, unreachable)
  paths <- get_paths(as.integer(search_df$parent))
  call_nodes(graph, .f, search_df, paths, dot_params)[focus_ind(graph, 'nodes')]
}
#' @rdname map_bfs
#' @export
map_bfs_lgl <- function(root, mode = 'out', unreachable = FALSE, .f, ...) {
  res <- map_bfs(root = root, mode = mode, unreachable = unreachable, .f = .f, ...)
  as_vector(res, .type = logical(1))
}
#' @rdname map_bfs
#' @export
map_bfs_chr <- function(root, mode = 'out', unreachable = FALSE, .f, ...) {
  res <- map_bfs(root = root, mode = mode, unreachable = unreachable, .f = .f, ...)
  as_vector(res, .type = character(1))
}
#' @rdname map_bfs
#' @export
map_bfs_int <- function(root, mode = 'out', unreachable = FALSE, .f, ...) {
  res <- map_bfs(root = root, mode = mode, unreachable = unreachable, .f = .f, ...)
  as_vector(res, .type = integer(1))
}
#' @rdname map_bfs
#' @export
map_bfs_dbl <- function(root, mode = 'out', unreachable = FALSE, .f, ...) {
  res <- map_bfs(root = root, mode = mode, unreachable = unreachable, .f = .f, ...)
  as_vector(res, .type = double(1))
}
#' Apply a function to nodes in the reverse order of a breath first search
#'
#' These functions allow you to map over the nodes in a graph, by first
#' performing a breath first search on the graph and then mapping over each
#' node in the reverse order they are visited. The mapping function will have
#' access to the result and search statistics for all the nodes following itself
#' in the search. To map over the nodes in the original direction use
#' [map_bfs()].
#'
#' @details
#' The function provided to `.f` will be called with the following arguments in
#' addition to those supplied through `...`:
#'
#' * `graph`: The full `tbl_graph` object
#' * `node`: The index of the node currently mapped over
#' * `rank`: The rank of the node in the search
#' * `parent`: The index of the node that led to the current node
#' * `before`: The index of the node that was visited before the current node
#' * `after`: The index of the node that was visited after the current node.
#' * `dist`: The distance of the current node from the root
#' * `path`: A table containing `node`, `rank`, `parent`, `before`, `after`,
#'   `dist`, and `result` columns giving the values for each node reached from
#'   the current node. The `result` column will contain the result of the mapping
#'   of each node in a list.
#'
#' Instead of spelling out all of these in the function it is possible to simply
#' name the ones needed and use `...` to catch the rest.
#'
#' @inheritParams map_bfs
#'
#' @return `map_bfs_back()` returns a list of the same length as the number of
#' nodes in the graph, in the order matching the node order in the graph (that
#' is, not in the order they are called). `map_bfs_back_*()` tries to coerce
#' its result into a vector of the classes `logical` (`map_bfs_back_lgl`),
#' `character` (`map_bfs_back_chr`), `integer` (`map_bfs_back_int`), or `double`
#' (`map_bfs_back_dbl`). These functions will throw an error if they are
#' unsuccesful, so they are type safe.
#'
#' @family node map functions
#'
#' @export
#'
#' @examples
#' # Collect values from children
#' create_tree(40, children = 3, directed = TRUE) %>%
#'   mutate(value = round(runif(40)*100)) %>%
#'   mutate(child_acc = map_bfs_back_dbl(node_is_root(), .f = function(node, path, ...) {
#'     if (nrow(path) == 0) .N()$value[node]
#'     else {
#'       sum(unlist(path$result[path$parent == node]))
#'     }
#'   }))
map_bfs_back <- function(root, mode = 'out', unreachable = FALSE, .f, ...) {
  expect_nodes()
  graph <- .G()
  root <- as_node_ind(root, graph)
  dot_params <- list(...)
  search_df <- bfs_df(graph, root, mode, unreachable)
  offspring <- get_offspring(as.integer(search_df$parent), order(search_df$rank))
  call_nodes(graph, .f, search_df, offspring, dot_params, reverse = TRUE)[focus_ind(graph, 'nodes')]
}
#' @rdname map_bfs_back
#' @export
map_bfs_back_lgl <- function(root, mode = 'out', unreachable = FALSE, .f, ...) {
  res <- map_bfs_back(root = root, mode = mode, unreachable = unreachable, .f = .f, ...)
  as_vector(res, .type = logical(1))
}
#' @rdname map_bfs_back
#' @export
map_bfs_back_chr <- function(root, mode = 'out', unreachable = FALSE, .f, ...) {
  res <- map_bfs_back(root = root, mode = mode, unreachable = unreachable, .f = .f, ...)
  as_vector(res, .type = character(1))
}
#' @rdname map_bfs_back
#' @export
map_bfs_back_int <- function(root, mode = 'out', unreachable = FALSE, .f, ...) {
  res <- map_bfs_back(root = root, mode = mode, unreachable = unreachable, .f = .f, ...)
  as_vector(res, .type = integer(1))
}
#' @rdname map_bfs_back
#' @export
map_bfs_back_dbl <- function(root, mode = 'out', unreachable = FALSE, .f, ...) {
  res <- map_bfs_back(root = root, mode = mode, unreachable = unreachable, .f = .f, ...)
  as_vector(res, .type = double(1))
}
#' Apply a function to nodes in the order of a depth first search
#'
#' These functions allow you to map over the nodes in a graph, by first
#' performing a depth first search on the graph and then mapping over each
#' node in the order they are visited. The mapping function will have access to
#' the result and search statistics for all the nodes between itself and the
#' root in the search. To map over the nodes in the reverse direction use
#' [map_dfs_back()].
#'
#' @details
#' The function provided to `.f` will be called with the following arguments in
#' addition to those supplied through `...`:
#'
#' * `graph`: The full `tbl_graph` object
#' * `node`: The index of the node currently mapped over
#' * `rank`: The rank of the node in the search
#' * `rank_out`: The rank of the completion of the nodes subtree
#' * `parent`: The index of the node that led to the current node
#' * `dist`: The distance of the current node from the root
#' * `path`: A table containing `node`, `rank`, `rank_out`, `parent`, dist`, and
#'   `result` columns giving the values for each node leading to the
#'   current node. The `result` column will contain the result of the mapping
#'   of each node in a list.
#'
#' Instead of spelling out all of these in the function it is possible to simply
#' name the ones needed and use `...` to catch the rest.
#'
#' @inheritParams map_bfs
#'
#' @return `map_dfs()` returns a list of the same length as the number of nodes
#' in the graph, in the order matching the node order in the graph (that is, not
#' in the order they are called). `map_dfs_*()` tries to coerce its result into
#' a vector of the classes `logical` (`map_dfs_lgl`), `character`
#' (`map_dfs_chr`), `integer` (`map_dfs_int`), or `double` (`map_dfs_dbl`).
#' These functions will throw an error if they are unsuccesful, so they are type
#' safe.
#'
#' @family node map functions
#'
#' @export
#'
#' @examples
#' # Add a random integer to the last value along a search
#' create_tree(40, children = 3, directed = TRUE) %>%
#'   mutate(child_acc = map_dfs_int(node_is_root(), .f = function(node, path, ...) {
#'     last_val <- if (nrow(path) == 0) 0L else tail(unlist(path$result), 1)
#'     last_val + sample(1:10, 1)
#'   }))
map_dfs <- function(root, mode = 'out', unreachable = FALSE, .f, ...) {
  expect_nodes()
  graph <- .G()
  root <- as_node_ind(root, graph)
  dot_params <- list(...)
  search_df <- dfs_df(graph, root, mode, unreachable)
  paths <- get_paths(as.integer(search_df$parent))
  call_nodes(graph, .f, search_df, paths, dot_params)[focus_ind(graph, 'nodes')]
}
#' @rdname map_dfs
#' @export
map_dfs_lgl <- function(root, mode = 'out', unreachable = FALSE, .f, ...) {
  res <- map_dfs(root = root, mode = mode, unreachable = unreachable, .f = .f, ...)
  as_vector(res, .type = logical(1))
}
#' @rdname map_dfs
#' @export
map_dfs_chr <- function(root, mode = 'out', unreachable = FALSE, .f, ...) {
  res <- map_dfs(root = root, mode = mode, unreachable = unreachable, .f = .f, ...)
  as_vector(res, .type = character(1))
}
#' @rdname map_dfs
#' @export
map_dfs_int <- function(root, mode = 'out', unreachable = FALSE, .f, ...) {
  res <- map_dfs(root = root, mode = mode, unreachable = unreachable, .f = .f, ...)
  as_vector(res, .type = integer(1))
}
#' @rdname map_dfs
#' @export
map_dfs_dbl <- function(root, mode = 'out', unreachable = FALSE, .f, ...) {
  res <- map_dfs(root = root, mode = mode, unreachable = unreachable, .f = .f, ...)
  as_vector(res, .type = double(1))
}
#' Apply a function to nodes in the reverse order of a depth first search
#'
#' These functions allow you to map over the nodes in a graph, by first
#' performing a depth first search on the graph and then mapping over each
#' node in the reverse order they are visited. The mapping function will have
#' access to the result and search statistics for all the nodes following itself
#' in the search. To map over the nodes in the original direction use
#' [map_dfs()].
#'
#' @details
#' The function provided to `.f` will be called with the following arguments in
#' addition to those supplied through `...`:
#'
#' * `graph`: The full `tbl_graph` object
#' * `node`: The index of the node currently mapped over
#' * `rank`: The rank of the node in the search
#' * `rank_out`: The rank of the completion of the nodes subtree
#' * `parent`: The index of the node that led to the current node
#' * `dist`: The distance of the current node from the root
#' * `path`: A table containing `node`, `rank`, `rank_out`, `parent`, dist`, and
#'   `result` columns giving the values for each node reached from
#'   the current node. The `result` column will contain the result of the mapping
#'   of each node in a list.
#'
#' Instead of spelling out all of these in the function it is possible to simply
#' name the ones needed and use `...` to catch the rest.
#'
#' @inheritParams map_bfs
#'
#' @return `map_dfs_back()` returns a list of the same length as the number of
#' nodes in the graph, in the order matching the node order in the graph (that
#' is, not in the order they are called). `map_dfs_back_*()` tries to coerce
#' its result into a vector of the classes `logical` (`map_dfs_back_lgl`),
#' `character` (`map_dfs_back_chr`), `integer` (`map_dfs_back_int`), or `double`
#' (`map_dfs_back_dbl`). These functions will throw an error if they are
#' unsuccesful, so they are type safe.
#'
#' @family node map functions
#'
#' @export
#'
#' @examples
#' # Collect values from the 2 closest layers of children in a dfs search
#' create_tree(40, children = 3, directed = TRUE) %>%
#'   mutate(value = round(runif(40)*100)) %>%
#'   mutate(child_acc = map_dfs_back(node_is_root(), .f = function(node, path, dist, ...) {
#'     if (nrow(path) == 0) .N()$value[node]
#'     else {
#'       unlist(path$result[path$dist - dist <= 2])
#'     }
#'   }))
map_dfs_back <- function(root, mode = 'out', unreachable = FALSE, .f, ...) {
  expect_nodes()
  graph <- .G()
  root <- as_node_ind(root, graph)
  dot_params <- list(...)
  search_df <- dfs_df(graph, root, mode, unreachable)
  offspring <- get_offspring(as.integer(search_df$parent), order(search_df$rank))
  call_nodes(graph, .f, search_df, offspring, dot_params, reverse = TRUE)[focus_ind(graph, 'nodes')]
}
#' @rdname map_dfs_back
#' @export
map_dfs_back_lgl <- function(root, mode = 'out', unreachable = FALSE, .f, ...) {
  res <- map_dfs_back(root = root, mode = mode, unreachable = unreachable, .f = .f, ...)
  as_vector(res, .type = logical(1))
}
#' @rdname map_dfs_back
#' @export
map_dfs_back_chr <- function(root, mode = 'out', unreachable = FALSE, .f, ...) {
  res <- map_dfs_back(root = root, mode = mode, unreachable = unreachable, .f = .f, ...)
  as_vector(res, .type = character(1))
}
#' @rdname map_dfs_back
#' @export
map_dfs_back_int <- function(root, mode = 'out', unreachable = FALSE, .f, ...) {
  res <- map_dfs_back(root = root, mode = mode, unreachable = unreachable, .f = .f, ...)
  as_vector(res, .type = integer(1))
}
#' @rdname map_dfs_back
#' @export
map_dfs_back_dbl <- function(root, mode = 'out', unreachable = FALSE, .f, ...) {
  res <- map_dfs_back(root = root, mode = mode, unreachable = unreachable, .f = .f, ...)
  as_vector(res, .type = double(1))
}
#' Map a function over a graph representing the neighborhood of each node
#'
#' This function extracts the neighborhood of each node as a graph and maps over
#' each of these neighborhood graphs. Conceptually it is similar to
#' [igraph::local_scan()], but it borrows the type safe versions available in
#' [map_bfs()] and [map_dfs()].
#'
#' @details
#' The function provided to `.f` will be called with the following arguments in
#' addition to those supplied through `...`:
#'
#' * `neighborhood`: The neighborhood graph of the node
#' * `graph`: The full `tbl_graph` object
#' * `node`: The index of the node currently mapped over
#'
#' The `neighborhood` graph will contain an extra node attribute called
#' `.central_node`, which will be `TRUE` for the node that the neighborhood is
#' expanded from and `FALSE` for everything else.
#'
#' @inheritParams igraph::ego
#' @inheritParams map_bfs
#'
#' @return `map_local()` returns a list of the same length as the number of
#' nodes in the graph, in the order matching the node order in the graph.
#' `map_local_*()` tries to coerce its result into a vector of the classes
#' `logical` (`map_local_lgl`), `character` (`map_local_chr`), `integer`
#' (`map_local_int`), or `double` (`map_local_dbl`). These functions will throw
#' an error if they are unsuccesful, so they are type safe.
#'
#' @importFrom igraph gorder make_ego_graph V<-
#' @export
#'
#' @examples
#' # Smooth out values over a neighborhood
#' create_notable('meredith') %>%
#'   mutate(value = rpois(graph_order(), 5)) %>%
#'   mutate(value_smooth = map_local_dbl(order = 2, .f = function(neighborhood, ...) {
#'     mean(as_tibble(neighborhood, active = 'nodes')$value)
#'   }))
map_local <- function(order = 1, mode = 'all', mindist = 0, .f, ...) {
  expect_nodes()
  graph <- .G()
  V(graph)$.central_node <- FALSE
  res <- lapply(focus_ind(graph, 'nodes'), function(i) {
    V(graph)$.central_node[i] <- TRUE
    ego_graph <- make_ego_graph(graph, order = order, nodes = i, mode = mode, mindist = mindist)[[1]]
    .f(neighborhood = as_tbl_graph(ego_graph), graph = graph, node = i, ...)
  })
}
#' @rdname map_local
#' @export
map_local_lgl <- function(order = 1, mode = 'all', mindist = 0, .f, ...) {
  res <- map_local(order = order, mode = mode, mindist = mindist, .f = .f, ...)
  as_vector(res, .type = logical(1))
}
#' @rdname map_local
#' @export
map_local_chr <- function(order = 1, mode = 'all', mindist = 0, .f, ...) {
  res <- map_local(order = order, mode = mode, mindist = mindist, .f = .f, ...)
  as_vector(res, .type = character(1))
}
#' @rdname map_local
#' @export
map_local_int <- function(order = 1, mode = 'all', mindist = 0, .f, ...) {
  res <- map_local(order = order, mode = mode, mindist = mindist, .f = .f, ...)
  as_vector(res, .type = integer(1))
}
#' @rdname map_local
#' @export
map_local_dbl <- function(order = 1, mode = 'all', mindist = 0, .f, ...) {
  res <- map_local(order = order, mode = mode, mindist = mindist, .f = .f, ...)
  as_vector(res, .type = double(1))
}

# Helpers -----------------------------------------------------------------

#' @importFrom igraph bfs
#' @importFrom tibble tibble
bfs_df <- function(graph, root, mode, unreachable) {
  search <- bfs(graph = graph, root = root, mode = mode, unreachable = unreachable,
                order = TRUE, rank = TRUE, father = TRUE, pred = TRUE,
                succ = TRUE, dist = TRUE)
  nodes <- seq_along(search$order)
  tibble(
    node = nodes,
    rank = as.integer(search$rank),
    parent = as.integer(search$father),
    before = as.integer(search$pred),
    after = as.integer(search$succ),
    dist = as.integer(search$dist),
    result = rep(list(NULL), length(nodes))
  )
}
#' @importFrom igraph dfs
#' @importFrom tibble tibble
dfs_df <- function(graph, root, mode, unreachable) {
  search <- dfs(graph = graph, root = root, mode = mode, unreachable = unreachable,
                order = TRUE, order.out = TRUE, father = TRUE, dist = TRUE)
  nodes <- seq_along(search$order)
  tibble(
    node = nodes,
    rank = match(nodes, as.integer(search$order)),
    rank_out = match(nodes, as.integer(search$order.out)),
    parent = as.integer(search$father),
    dist = as.integer(search$dist),
    result = rep(list(NULL), length(nodes))
  )
}
call_nodes <- function(graph, .f, search, connections, dot_params, reverse = FALSE) {
  not_results <- which(names(search) != 'result')
  call_order <- order(search$rank)
  if (reverse) call_order <- rev(call_order)
  for (i in call_order) {
    if (is.na(i)) break

    conn <- connections[[i]]
    search$result[[i]] <- do.call(
      .f,
      c(list(graph = graph),
        as.list(search[i, not_results]),
        list(path = search[conn, , drop = FALSE]),
        dot_params)
    )
  }
  search$result
}
get_offspring <- function(parent, order) {
  offspring <- rep(list(integer(0)), length(parent))
  direct_offspring <- split(seq_along(parent), parent)
  offspring[as.integer(names(direct_offspring))] <- direct_offspring
  offspring <- collect_offspring(offspring, as.integer(rev(order)))
  lapply(offspring, function(x) x[order(match(x, order))])
}

# Avoid importing full purrr for as_vector fun
can_simplify <- function(x, type = NULL) {
  is_atomic <- vapply(x, is.atomic, logical(1))
  if (!all(is_atomic))
    return(FALSE)
  mode <- unique(vapply(x, typeof, character(1)))
  if (length(mode) > 1 && !all(c("double", "integer") %in%
                               mode)) {
    return(FALSE)
  }
  is.null(type) || can_coerce(x, type)
}
can_coerce <- function(x, type) {
  actual <- typeof(x[[1]])
  if (is_mold(type)) {
    lengths <- unique(lengths(x))
    if (length(lengths) > 1 || !(lengths == length(type))) {
      return(FALSE)
    }
    else {
      type <- typeof(type)
    }
  }
  if (actual == "integer" && type %in% c("integer", "double",
                                         "numeric")) {
    return(TRUE)
  }
  if (actual %in% c("integer", "double") && type == "numeric") {
    return(TRUE)
  }
  actual == type
}
is_mold <- function (type) {
  modes <- c("numeric", "logical", "integer", "double", "complex",
             "character", "raw")
  length(type) > 1 || (!type %in% modes)
}
as_vector <- function(.x, .type = NULL){
  null_elem <- sapply(.x, is.null)
  if (any(null_elem)) {
    na <- rep(NA, length(.type))
    class(na) <- class(.type)
    .x[null_elem] <- na
  }
  if (can_simplify(.x, .type)) {
    unlist(.x)
  }
  else {
    type <- deparse(substitute(.type))
    cli::cli_abort("Cannot coerce values to {.cls {type}}")
  }
}