File: node.R

package info (click to toggle)
r-cran-tidygraph 1.3.1-2
  • links: PTS, VCS
  • area: main
  • in suites: sid, trixie
  • size: 880 kB
  • sloc: cpp: 41; sh: 13; makefile: 2
file content (293 lines) | stat: -rw-r--r-- 10,478 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
#' Querying node types
#'
#' These functions all lets the user query whether each node is of a certain
#' type. All of the functions returns a logical vector indicating whether the
#' node is of the type in question. Do note that the types are not mutually
#' exclusive and that nodes can thus be of multiple types.
#'
#' @param mode The way edges should be followed in the case of directed graphs.
#'
#' @return A logical vector of the same length as the number of nodes in the
#' graph.
#'
#' @name node_types
#' @rdname node_types
#'
#' @examples
#' # Find the root and leafs in a tree
#' create_tree(40, 2) %>%
#'   mutate(root = node_is_root(), leaf = node_is_leaf())
NULL

#' @describeIn node_types is the node a cut node (articaultion node)
#' @importFrom igraph gorder articulation_points
#' @export
node_is_cut <- function() {
  expect_nodes()
  graph <- .G()
  focus_ind(graph, 'nodes') %in% articulation_points(graph)
}
#' @describeIn node_types is the node a root in a tree
#' @importFrom igraph degree is_directed
#' @export
node_is_root <- function() {
  expect_nodes()
  graph <- .G()
  node_inds <- focus_ind(graph, 'nodes')
  if ((!is_tree(graph) && !is_forest(graph)) || !is_directed(graph)) {
    return(rep(FALSE, length(node_inds)))
  }
  deg_in <- degree(graph, mode = 'in') == 0
  deg_out <- degree(graph, mode = 'out') == 0
  root <- if (sum(deg_in) > sum(deg_out)) deg_out else deg_in
  root[node_inds]
}
#' @describeIn node_types is the node a leaf in a tree
#' @importFrom igraph degree is_directed
#' @export
node_is_leaf <- function() {
  expect_nodes()
  graph <- .G()
  node_inds <- focus_ind(graph, 'nodes')
  if ((!is_tree(graph) && !is_forest(graph))) {
    return(rep(FALSE, length(node_inds)))
  }
  if (is_directed(graph)) {
    deg_in <- degree(graph, mode = 'in') == 0
    deg_out <- degree(graph, mode = 'out') == 0
    leaf <- if (sum(deg_out) > sum(deg_in)) deg_out else deg_in
    leaf[node_inds]
  } else {
    degree(graph, v = node_inds, mode = 'all') == 1
  }
}
#' @describeIn node_types does the node only have incomming edges
#' @importFrom igraph degree
#' @export
node_is_sink <- function() {
  expect_nodes()
  graph <- .G()
  node_inds <- focus_ind(graph, 'nodes')
  deg_in <- degree(graph, v = node_inds, mode = 'in')
  deg_out <- degree(graph, v = node_inds, mode = 'out')
  deg_out == 0 & deg_in != 0
}
#' @describeIn node_types does the node only have outgoing edges
#' @importFrom igraph degree
#' @export
node_is_source <- function() {
  expect_nodes()
  graph <- .G()
  node_inds <- focus_ind(graph, 'nodes')
  deg_in <- degree(graph, v = node_inds, mode = 'in')
  deg_out <- degree(graph, v = node_inds, mode = 'out')
  deg_out != 0 & deg_in == 0
}
#' @describeIn node_types is the node unconnected
#' @importFrom igraph degree
#' @export
node_is_isolated <- function() {
  expect_nodes()
  graph <- .G()
  degree(graph, v = focus_ind(graph, 'nodes')) == 0
}
#' @describeIn node_types is the node connected to all other nodes in the graph
#' @importFrom igraph ego_size gorder
#' @export
node_is_universal <- function(mode = 'out') {
  expect_nodes()
  graph <- .G()
  ego_size(graph, order = 1, nodes = focus_ind(graph, 'nodes'), mode = mode) == gorder(graph)
}
#' @describeIn node_types are all the neighbors of the node connected
#' @importFrom igraph local_scan ecount ego_size
#' @export
node_is_simplical <- function(mode = 'out') {
  expect_nodes()
  graph <- .G()
  node_inds <- focus_ind(graph, 'nodes')
  n_edges <- local_scan(graph, k = 1, mode = mode, FUN = ecount)[node_inds]
  n_nodes <- ego_size(graph, order = 1, nodes = node_inds, mode = mode)
  n_edges == n_nodes * (n_nodes - 1) * 0.5
}
#' @describeIn node_types does the node have the minimal eccentricity in the graph
#' @importFrom igraph eccentricity
#' @export
node_is_center <- function(mode = 'out') {
  expect_nodes()
  graph <- .G()
  ecc <- eccentricity(graph, mode = mode)
  ecc[focus_ind(graph, 'nodes')] == min(ecc)
}
#' @describeIn node_types is a node adjacent to any of the nodes given in `to`
#' @param to The nodes to test for adjacency to
#' @param include_to Should the nodes in `to` be marked as adjacent as well
#' @importFrom igraph adjacent_vertices
#' @export
node_is_adjacent <- function(to, mode = 'all', include_to = TRUE) {
  expect_nodes()
  graph <- .G()
  to <- as_node_ind(to, graph)
  include <- unlist(adjacent_vertices(graph, to, mode))
  if (include_to) include <- union(to, include)
  focus_ind(graph, 'nodes') %in% include
}
#' @describeIn node_types Is a node part of the keyplayers in the graph (`influenceR`)
#' @param k The number of keyplayers to identify
#' @param p The probability to accept a lesser state
#' @param tol Optimisation tolerance, below which the optimisation will stop
#' @param maxsec The total computation budget for the optimization, in seconds
#' @param roundsec Number of seconds in between synchronizing workers' answer
#' @importFrom igraph gorder
#' @export
node_is_keyplayer <- function(k, p = 0, tol = 1e-4, maxsec = 120, roundsec = 30) {
  expect_influencer()
  expect_nodes()
  graph <- .G()
  ind <- influenceR::keyplayer(graph, k = k, prob = p, tol = tol, maxsec = maxsec, roundsec = roundsec)
  focus_ind(graph, 'nodes') %in% ind
}
#' @describeIn node_types Is a node connected to all (or any) nodes in a set
#' @param nodes The set of nodes to test connectivity to. Can be a list to use
#' different sets for different nodes. If a list it will be recycled as
#' necessary.
#' @param any Logical. If `TRUE` the node only needs to be connected to a single
#' node in the set for it to return `TRUE`
#' @importFrom igraph distances gorder
#' @export
node_is_connected <- function(nodes, mode = 'all', any = FALSE) {
  expect_nodes()
  graph <- .G()
  node_inds <- focus_ind(graph, 'nodes')
  if (!is.list(nodes)) nodes <- list(nodes)
  all_nodes <- unique(unlist(nodes))
  reached <- is.finite(t(distances(graph, v = node_inds, to = all_nodes, mode = mode, weights = NA)))
  nodes <- rep_len(nodes, length(node_inds))
  vapply(seq_along(node_inds), function(i) {
    n <- node_inds[i]
    connections <- match(nodes[[i]], all_nodes)
    found <- reached[,n][connections]
    if (any) any(found) else all(found)
  }, logical(1))
}
#' Querying node measures
#'
#' These functions are a collection of node measures that do not really fall
#' into the class of [centrality] measures. For lack of a better place they are
#' collected under the `node_*` umbrella of functions.
#'
#' @param mode How edges are treated. In `node_coreness()` it chooses which kind
#' of coreness measure to calculate. In `node_efficiency()` it defines how the
#' local neighborhood is created
#' @param weights The weights to use for each node during calculation
#' @param directed Should the graph be treated as a directed graph if it is in
#' fact directed
#'
#' @return A numeric vector of the same length as the number of nodes in the
#' graph.
#'
#' @name node_measures
#' @rdname node_measures
#'
#' @examples
#' # Calculate Burt's Constraint for each node
#' create_notable('meredith') %>%
#'   mutate(b_constraint = node_constraint())
NULL

#' @describeIn node_measures measure the maximum shortest path to all other nodes in the graph
#' @importFrom igraph eccentricity
#' @export
node_eccentricity <- function(mode = 'out') {
  expect_nodes()
  graph <- .G()
  eccentricity(graph, focus_ind(graph, 'nodes'), mode = mode)
}
#' @describeIn node_measures measures Burts constraint of the node. See [igraph::constraint()]
#' @importFrom igraph constraint
#' @export
node_constraint <- function(weights = NULL) {
  expect_nodes()
  graph <- .G()
  weights <- enquo(weights)
  weights <- eval_tidy(weights, .E())
  if (is.null(weights)) {
    weights <- rep_len(1L, gsize(graph))
  }
  constraint(graph, focus_ind(graph, 'nodes'), weights = weights)
}
#' @describeIn node_measures measures the coreness of each node. See [igraph::coreness()]
#' @importFrom igraph coreness
#' @export
node_coreness <- function(mode = 'out') {
  expect_nodes()
  graph <- .G()
  coreness(graph, mode = mode)[focus_ind(graph, 'nodes')]
}
#' @describeIn node_measures measures the diversity of the node. See [igraph::diversity()]
#' @importFrom igraph diversity
#' @export
node_diversity <- function(weights) {
  expect_nodes()
  graph <- .G()
  if (missing(weights)) {
    cli::cli_abort('{.arg weights} must be provided')
  }
  weights <- enquo(weights)
  weights <- eval_tidy(weights, .E())
  if (is.null(weights)) {
    cli::cli_abort('{.arg weights} must be a valid vector')
  }
  diversity(graph, weights = weights, vids = focus_ind(graph, 'nodes'))
}
#' @describeIn node_measures measures the local efficiency around each node. See [igraph::local_efficiency()]
#' @importFrom rlang enquo eval_tidy
#' @importFrom igraph local_efficiency
#' @export
node_efficiency <- function(weights = NULL, directed = TRUE, mode = 'all') {
  expect_nodes()
  graph <- .G()
  weights <- enquo(weights)
  weights <- eval_tidy(weights, .E()) %||% NA
  local_efficiency(graph, focus_ind(graph, 'nodes'), weights, directed, mode)
}
#' @describeIn node_measures measures Valente's Bridging measures for detecting structural bridges (`influenceR`)
#' @export
node_bridging_score <- function() {
  expect_influencer()
  expect_nodes()
  graph <- .G()
  influenceR::bridging(graph)[focus_ind(graph, 'nodes')]
}
#' @describeIn node_measures measures Burt's Effective Network Size indicating access to structural holes in the network (`influenceR`)
#' @export
node_effective_network_size <- function() {
  expect_influencer()
  expect_nodes()
  graph <- .G()
  influenceR::ens(graph)[focus_ind(graph, 'nodes')]
}
#' @describeIn node_measures measures the impact on connectivity when removing the node (`NetSwan`)
#' @export
node_connectivity_impact <- function() {
  expect_netswan()
  expect_nodes()
  graph <- .G()
  NetSwan::swan_connectivity(graph)[focus_ind(graph, 'nodes')]
}
#' @describeIn node_measures measures the impact on closeness when removing the node (`NetSwan`)
#' @export
node_closeness_impact <- function() {
  expect_netswan()
  expect_nodes()
  graph <- .G()
  NetSwan::swan_closeness(graph)[focus_ind(graph, 'nodes')]
}
#' @describeIn node_measures measures the impact on fareness (distance between all node pairs) when removing the node (`NetSwan`)
#' @export
node_fareness_impact <- function() {
  expect_netswan()
  expect_nodes()
  graph <- .G()
  NetSwan::swan_efficiency(graph)[focus_ind(graph, 'nodes')]
}