1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173
|
#' Spread a key-value pair across multiple columns
#'
#' @description
#' `r lifecycle::badge("superseded")`
#'
#' Development on `spread()` is complete, and for new code we recommend
#' switching to `pivot_wider()`, which is easier to use, more featureful, and
#' still under active development.
#' `df %>% spread(key, value)` is equivalent to
#' `df %>% pivot_wider(names_from = key, values_from = value)`
#'
#' See more details in `vignette("pivot")`.
#'
#' @param data A data frame.
#' @param key,value <[`tidy-select`][tidyr_tidy_select]> Columns to use
#' for `key` and `value`.
#' @param fill If set, missing values will be replaced with this value. Note
#' that there are two types of missingness in the input: explicit missing
#' values (i.e. `NA`), and implicit missings, rows that simply aren't
#' present. Both types of missing value will be replaced by `fill`.
#' @param convert If `TRUE`, [type.convert()] with \code{asis =
#' TRUE} will be run on each of the new columns. This is useful if the value
#' column was a mix of variables that was coerced to a string. If the class of
#' the value column was factor or date, note that will not be true of the new
#' columns that are produced, which are coerced to character before type
#' conversion.
#' @param drop If `FALSE`, will keep factor levels that don't appear in the
#' data, filling in missing combinations with `fill`.
#' @param sep If `NULL`, the column names will be taken from the values of
#' `key` variable. If non-`NULL`, the column names will be given
#' by `"<key_name><sep><key_value>"`.
#' @export
#' @examples
#' stocks <- tibble(
#' time = as.Date("2009-01-01") + 0:9,
#' X = rnorm(10, 0, 1),
#' Y = rnorm(10, 0, 2),
#' Z = rnorm(10, 0, 4)
#' )
#' stocksm <- stocks %>% gather(stock, price, -time)
#' stocksm %>% spread(stock, price)
#' stocksm %>% spread(time, price)
#'
#' # Spread and gather are complements
#' df <- tibble(x = c("a", "b"), y = c(3, 4), z = c(5, 6))
#' df %>%
#' spread(x, y) %>%
#' gather("x", "y", a:b, na.rm = TRUE)
#'
#' # Use 'convert = TRUE' to produce variables of mixed type
#' df <- tibble(
#' row = rep(c(1, 51), each = 3),
#' var = rep(c("Sepal.Length", "Species", "Species_num"), 2),
#' value = c(5.1, "setosa", 1, 7.0, "versicolor", 2)
#' )
#' df %>% spread(var, value) %>% str()
#' df %>% spread(var, value, convert = TRUE) %>% str()
spread <- function(data, key, value, fill = NA, convert = FALSE,
drop = TRUE, sep = NULL) {
UseMethod("spread")
}
#' @export
spread.data.frame <- function(data, key, value, fill = NA, convert = FALSE,
drop = TRUE, sep = NULL) {
key_var <- tidyselect::vars_pull(names(data), !!enquo(key))
value_var <- tidyselect::vars_pull(names(data), !!enquo(value))
col <- data[key_var]
col_id <- id(col, drop = drop)
col_labels <- split_labels(col, col_id, drop = drop)
rows <- data[setdiff(names(data), c(key_var, value_var))]
if (ncol(rows) == 0 && nrow(rows) > 0) {
# Special case when there's only one row
row_id <- structure(1L, n = 1L)
row_labels <- as.data.frame(matrix(nrow = 1, ncol = 0))
} else {
row_id <- id(rows, drop = drop)
row_labels <- split_labels(rows, row_id, drop = drop)
rownames(row_labels) <- NULL
}
overall <- id(list(col_id, row_id), drop = FALSE)
n <- attr(overall, "n")
# Check that each output value occurs in unique location
if (anyDuplicated(overall)) {
groups <- split(seq_along(overall), overall)
groups <- groups[map_int(groups, length) > 1]
shared <- sum(map_int(groups, length))
str <- map_chr(groups, function(x) paste0(x, collapse = ", "))
cli::cli_abort(c(
"Each row of output must be identified by a unique combination of keys.",
i = "Keys are shared for {shared} rows",
set_names(str, "*")
))
}
# Add in missing values, if necessary
if (length(overall) < n) {
overall <- match(seq_len(n), overall, nomatch = NA)
} else {
overall <- order(overall)
}
value <- data[[value_var]]
ordered <- value[overall]
if (!is.na(fill)) {
ordered[is.na(ordered)] <- fill
}
if (convert && !is_character(ordered)) {
ordered <- as.character(ordered)
}
dim(ordered) <- c(attr(row_id, "n"), attr(col_id, "n"))
colnames(ordered) <- enc2utf8(col_names(col_labels, sep = sep))
ordered <- as_tibble_matrix(ordered)
if (convert) {
ordered[] <- map(ordered, type.convert, as.is = TRUE)
}
out <- df_append(row_labels, ordered)
reconstruct_tibble(data, out, c(key_var, value_var))
}
col_names <- function(x, sep = NULL) {
names <- as.character(x[[1]])
if (is_null(sep)) {
if (length(names) == 0) {
# ifelse will return logical()
character()
} else {
ifelse(are_na(names), "<NA>", names)
}
} else {
paste(names(x)[[1]], names, sep = sep)
}
}
as_tibble_matrix <- function(x) {
# getS3method() only available in R >= 3.3
get("as_tibble.matrix", asNamespace("tibble"), mode = "function")(x)
}
split_labels <- function(df, id, drop = TRUE) {
if (length(df) == 0) {
return(df)
}
if (drop) {
representative <- match(sort(unique(id)), id)
out <- df[representative, , drop = FALSE]
rownames(out) <- NULL
out
} else {
unique_values <- map(df, ulevels)
rev(expand.grid(rev(unique_values), stringsAsFactors = FALSE))
}
}
ulevels <- function(x) {
if (is.factor(x)) {
orig_levs <- levels(x)
x <- addNA(x, ifany = TRUE)
levs <- levels(x)
factor(levs, levels = orig_levs, ordered = is.ordered(x), exclude = NULL)
} else if (is.list(x)) {
unique(x)
} else {
sort(unique(x), na.last = TRUE)
}
}
|