1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224
|
#' Unnest a list-column of data frames into rows and columns
#'
#' Unnest expands a list-column containing data frames into rows and columns.
#'
#' @inheritSection nest New syntax
#' @inheritParams unchop
#' @inheritParams unpack
#' @param cols <[`tidy-select`][tidyr_tidy_select]> List-columns to unnest.
#'
#' When selecting multiple columns, values from the same row will be recycled
#' to their common size.
#' @param ... `r lifecycle::badge("deprecated")`:
#' previously you could write `df %>% unnest(x, y, z)`.
#' Convert to `df %>% unnest(c(x, y, z))`. If you previously created a new
#' variable in `unnest()` you'll now need to do it explicitly with `mutate()`.
#' Convert `df %>% unnest(y = fun(x, y, z))`
#' to `df %>% mutate(y = fun(x, y, z)) %>% unnest(y)`.
#' @param names_sep If `NULL`, the default, the outer names will come from the
#' inner names. If a string, the outer names will be formed by pasting
#' together the outer and the inner column names, separated by `names_sep`.
#' @param .drop,.preserve
#' `r lifecycle::badge("deprecated")`:
#' all list-columns are now preserved; If there are any that you
#' don't want in the output use `select()` to remove them prior to
#' unnesting.
#' @param .id
#' `r lifecycle::badge("deprecated")`:
#' convert `df %>% unnest(x, .id = "id")` to `df %>% mutate(id =
#' names(x)) %>% unnest(x))`.
#' @param .sep
#' `r lifecycle::badge("deprecated")`:
#' use `names_sep` instead.
#' @export
#' @family rectangling
#' @examples
#' # unnest() is designed to work with lists of data frames
#' df <- tibble(
#' x = 1:3,
#' y = list(
#' NULL,
#' tibble(a = 1, b = 2),
#' tibble(a = 1:3, b = 3:1, c = 4)
#' )
#' )
#' # unnest() recycles input rows for each row of the list-column
#' # and adds a column for each column
#' df %>% unnest(y)
#'
#' # input rows with 0 rows in the list-column will usually disappear,
#' # but you can keep them (generating NAs) with keep_empty = TRUE:
#' df %>% unnest(y, keep_empty = TRUE)
#'
#' # Multiple columns ----------------------------------------------------------
#' # You can unnest multiple columns simultaneously
#' df <- tibble(
#' x = 1:2,
#' y = list(
#' tibble(a = 1, b = 2),
#' tibble(a = 3:4, b = 5:6)
#' ),
#' z = list(
#' tibble(c = 1, d = 2),
#' tibble(c = 3:4, d = 5:6)
#' )
#' )
#' df %>% unnest(c(y, z))
#'
#' # Compare with unnesting one column at a time, which generates
#' # the Cartesian product
#' df %>%
#' unnest(y) %>%
#' unnest(z)
unnest <- function(data,
cols,
...,
keep_empty = FALSE,
ptype = NULL,
names_sep = NULL,
names_repair = "check_unique",
.drop = deprecated(),
.id = deprecated(),
.sep = deprecated(),
.preserve = deprecated()) {
deprecated <- FALSE
if (!missing(.preserve)) {
lifecycle::deprecate_warn(
"1.0.0",
"unnest(.preserve = )",
details = "All list-columns are now preserved",
always = TRUE
)
deprecated <- TRUE
.preserve <- tidyselect::vars_select(tbl_vars(data), !!enquo(.preserve))
} else {
.preserve <- NULL
}
if (missing(cols) && missing(...)) {
list_cols <- names(data)[map_lgl(data, is_list)]
cols <- expr(c(!!!syms(setdiff(list_cols, .preserve))))
cli::cli_warn(c(
"`cols` is now required when using `unnest()`.",
i = "Please use `cols = {expr_text(cols)}`."
))
deprecated <- TRUE
}
if (missing(...)) {
cols <- enquo(cols)
} else {
dots <- enquos(cols, ..., .named = TRUE, .ignore_empty = "all")
data <- dplyr::mutate(data, !!!dots)
cols <- expr(c(!!!syms(names(dots))))
unnest_call <- expr(unnest(!!cols))
cli::cli_warn(c(
"`unnest()` has a new interface. See `?unnest` for details.",
i = "Try `df %>% {expr_text(unnest_call)}`, with `mutate()` if needed."
))
deprecated <- TRUE
}
if (!is_missing(.drop)) {
lifecycle::deprecate_warn(
"1.0.0",
"unnest(.drop = )",
details = "All list-columns are now preserved.",
always = TRUE
)
deprecated <- TRUE
}
if (!is_missing(.id)) {
lifecycle::deprecate_warn(
"1.0.0",
"unnest(.id = )",
details = "Manually create column of names instead.",
always = TRUE
)
deprecated <- TRUE
first_col <- tidyselect::vars_select(tbl_vars(data), !!cols)[[1]]
data[[.id]] <- names(data[[first_col]])
}
if (!is_missing(.sep)) {
lifecycle::deprecate_warn("1.0.0", "unnest(.sep = )",
details = glue("Use `names_sep = '{.sep}'` instead.")
)
deprecated <- TRUE
names_sep <- .sep
}
if (deprecated) {
return(unnest(
data,
cols = !!cols,
names_sep = names_sep,
keep_empty = keep_empty,
ptype = ptype,
names_repair = tidyr_legacy
))
}
UseMethod("unnest")
}
#' @export
unnest.data.frame <- function(data,
cols,
...,
keep_empty = FALSE,
ptype = NULL,
names_sep = NULL,
names_repair = "check_unique",
.drop = "DEPRECATED",
.id = "DEPRECATED",
.sep = "DEPRECATED",
.preserve = "DEPRECATED") {
error_call <- current_env()
cols <- tidyselect::eval_select(
expr = enquo(cols),
data = data,
allow_rename = FALSE
)
cols <- unname(cols)
data <- unchop(
data = data,
cols = all_of(cols),
keep_empty = keep_empty,
ptype = ptype,
error_call = error_call
)
unpack(
data = data,
cols = all_of(cols),
names_sep = names_sep,
names_repair = names_repair,
error_call = error_call
)
}
#' @export
unnest.rowwise_df <- function(data,
cols,
...,
keep_empty = FALSE,
ptype = NULL,
names_sep = NULL,
names_repair = "check_unique") {
out <- unnest.data.frame(as_tibble(data), {{ cols }},
keep_empty = keep_empty,
ptype = ptype,
names_sep = names_sep,
names_repair = names_repair
)
out <- dplyr::grouped_df(out, dplyr::group_vars(data))
out
}
|