File: pivot.html

package info (click to toggle)
r-cran-tidyr 1.3.1-1
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 2,720 kB
  • sloc: cpp: 268; sh: 9; makefile: 2
file content (1711 lines) | stat: -rw-r--r-- 164,366 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
<!DOCTYPE html>

<html>

<head>

<meta charset="utf-8" />
<meta name="generator" content="pandoc" />
<meta http-equiv="X-UA-Compatible" content="IE=EDGE" />

<meta name="viewport" content="width=device-width, initial-scale=1" />



<title>Pivoting</title>

<script>// Pandoc 2.9 adds attributes on both header and div. We remove the former (to
// be compatible with the behavior of Pandoc < 2.8).
document.addEventListener('DOMContentLoaded', function(e) {
  var hs = document.querySelectorAll("div.section[class*='level'] > :first-child");
  var i, h, a;
  for (i = 0; i < hs.length; i++) {
    h = hs[i];
    if (!/^h[1-6]$/i.test(h.tagName)) continue;  // it should be a header h1-h6
    a = h.attributes;
    while (a.length > 0) h.removeAttribute(a[0].name);
  }
});
</script>

<style type="text/css">
code{white-space: pre-wrap;}
span.smallcaps{font-variant: small-caps;}
span.underline{text-decoration: underline;}
div.column{display: inline-block; vertical-align: top; width: 50%;}
div.hanging-indent{margin-left: 1.5em; text-indent: -1.5em;}
ul.task-list{list-style: none;}
</style>



<style type="text/css">
code {
white-space: pre;
}
.sourceCode {
overflow: visible;
}
</style>
<style type="text/css" data-origin="pandoc">
pre > code.sourceCode { white-space: pre; position: relative; }
pre > code.sourceCode > span { line-height: 1.25; }
pre > code.sourceCode > span:empty { height: 1.2em; }
.sourceCode { overflow: visible; }
code.sourceCode > span { color: inherit; text-decoration: inherit; }
div.sourceCode { margin: 1em 0; }
pre.sourceCode { margin: 0; }
@media screen {
div.sourceCode { overflow: auto; }
}
@media print {
pre > code.sourceCode { white-space: pre-wrap; }
pre > code.sourceCode > span { text-indent: -5em; padding-left: 5em; }
}
pre.numberSource code
{ counter-reset: source-line 0; }
pre.numberSource code > span
{ position: relative; left: -4em; counter-increment: source-line; }
pre.numberSource code > span > a:first-child::before
{ content: counter(source-line);
position: relative; left: -1em; text-align: right; vertical-align: baseline;
border: none; display: inline-block;
-webkit-touch-callout: none; -webkit-user-select: none;
-khtml-user-select: none; -moz-user-select: none;
-ms-user-select: none; user-select: none;
padding: 0 4px; width: 4em;
color: #aaaaaa;
}
pre.numberSource { margin-left: 3em; border-left: 1px solid #aaaaaa; padding-left: 4px; }
div.sourceCode
{ }
@media screen {
pre > code.sourceCode > span > a:first-child::before { text-decoration: underline; }
}
code span.al { color: #ff0000; font-weight: bold; } 
code span.an { color: #60a0b0; font-weight: bold; font-style: italic; } 
code span.at { color: #7d9029; } 
code span.bn { color: #40a070; } 
code span.bu { color: #008000; } 
code span.cf { color: #007020; font-weight: bold; } 
code span.ch { color: #4070a0; } 
code span.cn { color: #880000; } 
code span.co { color: #60a0b0; font-style: italic; } 
code span.cv { color: #60a0b0; font-weight: bold; font-style: italic; } 
code span.do { color: #ba2121; font-style: italic; } 
code span.dt { color: #902000; } 
code span.dv { color: #40a070; } 
code span.er { color: #ff0000; font-weight: bold; } 
code span.ex { } 
code span.fl { color: #40a070; } 
code span.fu { color: #06287e; } 
code span.im { color: #008000; font-weight: bold; } 
code span.in { color: #60a0b0; font-weight: bold; font-style: italic; } 
code span.kw { color: #007020; font-weight: bold; } 
code span.op { color: #666666; } 
code span.ot { color: #007020; } 
code span.pp { color: #bc7a00; } 
code span.sc { color: #4070a0; } 
code span.ss { color: #bb6688; } 
code span.st { color: #4070a0; } 
code span.va { color: #19177c; } 
code span.vs { color: #4070a0; } 
code span.wa { color: #60a0b0; font-weight: bold; font-style: italic; } 
</style>
<script>
// apply pandoc div.sourceCode style to pre.sourceCode instead
(function() {
  var sheets = document.styleSheets;
  for (var i = 0; i < sheets.length; i++) {
    if (sheets[i].ownerNode.dataset["origin"] !== "pandoc") continue;
    try { var rules = sheets[i].cssRules; } catch (e) { continue; }
    var j = 0;
    while (j < rules.length) {
      var rule = rules[j];
      // check if there is a div.sourceCode rule
      if (rule.type !== rule.STYLE_RULE || rule.selectorText !== "div.sourceCode") {
        j++;
        continue;
      }
      var style = rule.style.cssText;
      // check if color or background-color is set
      if (rule.style.color === '' && rule.style.backgroundColor === '') {
        j++;
        continue;
      }
      // replace div.sourceCode by a pre.sourceCode rule
      sheets[i].deleteRule(j);
      sheets[i].insertRule('pre.sourceCode{' + style + '}', j);
    }
  }
})();
</script>




<style type="text/css">body {
background-color: #fff;
margin: 1em auto;
max-width: 700px;
overflow: visible;
padding-left: 2em;
padding-right: 2em;
font-family: "Open Sans", "Helvetica Neue", Helvetica, Arial, sans-serif;
font-size: 14px;
line-height: 1.35;
}
#TOC {
clear: both;
margin: 0 0 10px 10px;
padding: 4px;
width: 400px;
border: 1px solid #CCCCCC;
border-radius: 5px;
background-color: #f6f6f6;
font-size: 13px;
line-height: 1.3;
}
#TOC .toctitle {
font-weight: bold;
font-size: 15px;
margin-left: 5px;
}
#TOC ul {
padding-left: 40px;
margin-left: -1.5em;
margin-top: 5px;
margin-bottom: 5px;
}
#TOC ul ul {
margin-left: -2em;
}
#TOC li {
line-height: 16px;
}
table {
margin: 1em auto;
border-width: 1px;
border-color: #DDDDDD;
border-style: outset;
border-collapse: collapse;
}
table th {
border-width: 2px;
padding: 5px;
border-style: inset;
}
table td {
border-width: 1px;
border-style: inset;
line-height: 18px;
padding: 5px 5px;
}
table, table th, table td {
border-left-style: none;
border-right-style: none;
}
table thead, table tr.even {
background-color: #f7f7f7;
}
p {
margin: 0.5em 0;
}
blockquote {
background-color: #f6f6f6;
padding: 0.25em 0.75em;
}
hr {
border-style: solid;
border: none;
border-top: 1px solid #777;
margin: 28px 0;
}
dl {
margin-left: 0;
}
dl dd {
margin-bottom: 13px;
margin-left: 13px;
}
dl dt {
font-weight: bold;
}
ul {
margin-top: 0;
}
ul li {
list-style: circle outside;
}
ul ul {
margin-bottom: 0;
}
pre, code {
background-color: #f7f7f7;
border-radius: 3px;
color: #333;
white-space: pre-wrap; 
}
pre {
border-radius: 3px;
margin: 5px 0px 10px 0px;
padding: 10px;
}
pre:not([class]) {
background-color: #f7f7f7;
}
code {
font-family: Consolas, Monaco, 'Courier New', monospace;
font-size: 85%;
}
p > code, li > code {
padding: 2px 0px;
}
div.figure {
text-align: center;
}
img {
background-color: #FFFFFF;
padding: 2px;
border: 1px solid #DDDDDD;
border-radius: 3px;
border: 1px solid #CCCCCC;
margin: 0 5px;
}
h1 {
margin-top: 0;
font-size: 35px;
line-height: 40px;
}
h2 {
border-bottom: 4px solid #f7f7f7;
padding-top: 10px;
padding-bottom: 2px;
font-size: 145%;
}
h3 {
border-bottom: 2px solid #f7f7f7;
padding-top: 10px;
font-size: 120%;
}
h4 {
border-bottom: 1px solid #f7f7f7;
margin-left: 8px;
font-size: 105%;
}
h5, h6 {
border-bottom: 1px solid #ccc;
font-size: 105%;
}
a {
color: #0033dd;
text-decoration: none;
}
a:hover {
color: #6666ff; }
a:visited {
color: #800080; }
a:visited:hover {
color: #BB00BB; }
a[href^="http:"] {
text-decoration: underline; }
a[href^="https:"] {
text-decoration: underline; }

code > span.kw { color: #555; font-weight: bold; } 
code > span.dt { color: #902000; } 
code > span.dv { color: #40a070; } 
code > span.bn { color: #d14; } 
code > span.fl { color: #d14; } 
code > span.ch { color: #d14; } 
code > span.st { color: #d14; } 
code > span.co { color: #888888; font-style: italic; } 
code > span.ot { color: #007020; } 
code > span.al { color: #ff0000; font-weight: bold; } 
code > span.fu { color: #900; font-weight: bold; } 
code > span.er { color: #a61717; background-color: #e3d2d2; } 
</style>




</head>

<body>




<h1 class="title toc-ignore">Pivoting</h1>



<div id="introduction" class="section level2">
<h2>Introduction</h2>
<p>This vignette describes the use of the new
<code>pivot_longer()</code> and <code>pivot_wider()</code> functions.
Their goal is to improve the usability of <code>gather()</code> and
<code>spread()</code>, and incorporate state-of-the-art features found
in other packages.</p>
<p>For some time, it’s been obvious that there is something
fundamentally wrong with the design of <code>spread()</code> and
<code>gather()</code>. Many people don’t find the names intuitive and
find it hard to remember which direction corresponds to spreading and
which to gathering. It also seems surprisingly hard to remember the
arguments to these functions, meaning that many people (including me!)
have to consult the documentation every time.</p>
<p>There are two important new features inspired by other R packages
that have been advancing reshaping in R:</p>
<ul>
<li><p><code>pivot_longer()</code> can work with multiple value
variables that may have different types, inspired by the enhanced
<code>melt()</code> and <code>dcast()</code> functions provided by the
<a href="https://github.com/Rdatatable/data.table/wiki">data.table</a>
package by Matt Dowle and Arun Srinivasan.</p></li>
<li><p><code>pivot_longer()</code> and <code>pivot_wider()</code> can
take a data frame that specifies precisely how metadata stored in column
names becomes data variables (and vice versa), inspired by the <a href="https://winvector.github.io/cdata/">cdata</a> package by John
Mount and Nina Zumel.</p></li>
</ul>
<p>In this vignette, you’ll learn the key ideas behind
<code>pivot_longer()</code> and <code>pivot_wider()</code> as you see
them used to solve a variety of data reshaping challenges ranging from
simple to complex.</p>
<p>To begin we’ll load some needed packages. In real analysis code, I’d
imagine you’d do with the <code>library(tidyverse)</code>, but I can’t
do that here since this vignette is embedded in a package.</p>
<div class="sourceCode" id="cb1"><pre class="sourceCode r"><code class="sourceCode r"><span id="cb1-1"><a href="#cb1-1" tabindex="-1"></a><span class="fu">library</span>(tidyr)</span>
<span id="cb1-2"><a href="#cb1-2" tabindex="-1"></a><span class="fu">library</span>(dplyr)</span>
<span id="cb1-3"><a href="#cb1-3" tabindex="-1"></a><span class="fu">library</span>(readr)</span></code></pre></div>
</div>
<div id="longer" class="section level2">
<h2>Longer</h2>
<p><code>pivot_longer()</code> makes datasets <strong>longer</strong> by
increasing the number of rows and decreasing the number of columns. I
don’t believe it makes sense to describe a dataset as being in “long
form”. Length is a relative term, and you can only say (e.g.) that
dataset A is longer than dataset B.</p>
<p><code>pivot_longer()</code> is commonly needed to tidy wild-caught
datasets as they often optimise for ease of data entry or ease of
comparison rather than ease of analysis. The following sections show how
to use <code>pivot_longer()</code> for a wide range of realistic
datasets.</p>
<div id="pew" class="section level3">
<h3>String data in column names</h3>
<p>The <code>relig_income</code> dataset stores counts based on a survey
which (among other things) asked people about their religion and annual
income:</p>
<div class="sourceCode" id="cb2"><pre class="sourceCode r"><code class="sourceCode r"><span id="cb2-1"><a href="#cb2-1" tabindex="-1"></a>relig_income</span>
<span id="cb2-2"><a href="#cb2-2" tabindex="-1"></a><span class="co">#&gt; # A tibble: 18 × 11</span></span>
<span id="cb2-3"><a href="#cb2-3" tabindex="-1"></a><span class="co">#&gt;    religion `&lt;$10k` `$10-20k` `$20-30k` `$30-40k` `$40-50k` `$50-75k` `$75-100k`</span></span>
<span id="cb2-4"><a href="#cb2-4" tabindex="-1"></a><span class="co">#&gt;    &lt;chr&gt;      &lt;dbl&gt;     &lt;dbl&gt;     &lt;dbl&gt;     &lt;dbl&gt;     &lt;dbl&gt;     &lt;dbl&gt;      &lt;dbl&gt;</span></span>
<span id="cb2-5"><a href="#cb2-5" tabindex="-1"></a><span class="co">#&gt;  1 Agnostic      27        34        60        81        76       137        122</span></span>
<span id="cb2-6"><a href="#cb2-6" tabindex="-1"></a><span class="co">#&gt;  2 Atheist       12        27        37        52        35        70         73</span></span>
<span id="cb2-7"><a href="#cb2-7" tabindex="-1"></a><span class="co">#&gt;  3 Buddhist      27        21        30        34        33        58         62</span></span>
<span id="cb2-8"><a href="#cb2-8" tabindex="-1"></a><span class="co">#&gt;  4 Catholic     418       617       732       670       638      1116        949</span></span>
<span id="cb2-9"><a href="#cb2-9" tabindex="-1"></a><span class="co">#&gt;  5 Don’t k…      15        14        15        11        10        35         21</span></span>
<span id="cb2-10"><a href="#cb2-10" tabindex="-1"></a><span class="co">#&gt;  6 Evangel…     575       869      1064       982       881      1486        949</span></span>
<span id="cb2-11"><a href="#cb2-11" tabindex="-1"></a><span class="co">#&gt;  7 Hindu          1         9         7         9        11        34         47</span></span>
<span id="cb2-12"><a href="#cb2-12" tabindex="-1"></a><span class="co">#&gt;  8 Histori…     228       244       236       238       197       223        131</span></span>
<span id="cb2-13"><a href="#cb2-13" tabindex="-1"></a><span class="co">#&gt;  9 Jehovah…      20        27        24        24        21        30         15</span></span>
<span id="cb2-14"><a href="#cb2-14" tabindex="-1"></a><span class="co">#&gt; 10 Jewish        19        19        25        25        30        95         69</span></span>
<span id="cb2-15"><a href="#cb2-15" tabindex="-1"></a><span class="co">#&gt; # ℹ 8 more rows</span></span>
<span id="cb2-16"><a href="#cb2-16" tabindex="-1"></a><span class="co">#&gt; # ℹ 3 more variables: `$100-150k` &lt;dbl&gt;, `&gt;150k` &lt;dbl&gt;,</span></span>
<span id="cb2-17"><a href="#cb2-17" tabindex="-1"></a><span class="co">#&gt; #   `Don&#39;t know/refused` &lt;dbl&gt;</span></span></code></pre></div>
<p>This dataset contains three variables:</p>
<ul>
<li><code>religion</code>, stored in the rows,</li>
<li><code>income</code> spread across the column names, and</li>
<li><code>count</code> stored in the cell values.</li>
</ul>
<p>To tidy it we use <code>pivot_longer()</code>:</p>
<div class="sourceCode" id="cb3"><pre class="sourceCode r"><code class="sourceCode r"><span id="cb3-1"><a href="#cb3-1" tabindex="-1"></a>relig_income <span class="sc">%&gt;%</span> </span>
<span id="cb3-2"><a href="#cb3-2" tabindex="-1"></a>  <span class="fu">pivot_longer</span>(</span>
<span id="cb3-3"><a href="#cb3-3" tabindex="-1"></a>    <span class="at">cols =</span> <span class="sc">!</span>religion, </span>
<span id="cb3-4"><a href="#cb3-4" tabindex="-1"></a>    <span class="at">names_to =</span> <span class="st">&quot;income&quot;</span>, </span>
<span id="cb3-5"><a href="#cb3-5" tabindex="-1"></a>    <span class="at">values_to =</span> <span class="st">&quot;count&quot;</span></span>
<span id="cb3-6"><a href="#cb3-6" tabindex="-1"></a>  )</span>
<span id="cb3-7"><a href="#cb3-7" tabindex="-1"></a><span class="co">#&gt; # A tibble: 180 × 3</span></span>
<span id="cb3-8"><a href="#cb3-8" tabindex="-1"></a><span class="co">#&gt;    religion income             count</span></span>
<span id="cb3-9"><a href="#cb3-9" tabindex="-1"></a><span class="co">#&gt;    &lt;chr&gt;    &lt;chr&gt;              &lt;dbl&gt;</span></span>
<span id="cb3-10"><a href="#cb3-10" tabindex="-1"></a><span class="co">#&gt;  1 Agnostic &lt;$10k                 27</span></span>
<span id="cb3-11"><a href="#cb3-11" tabindex="-1"></a><span class="co">#&gt;  2 Agnostic $10-20k               34</span></span>
<span id="cb3-12"><a href="#cb3-12" tabindex="-1"></a><span class="co">#&gt;  3 Agnostic $20-30k               60</span></span>
<span id="cb3-13"><a href="#cb3-13" tabindex="-1"></a><span class="co">#&gt;  4 Agnostic $30-40k               81</span></span>
<span id="cb3-14"><a href="#cb3-14" tabindex="-1"></a><span class="co">#&gt;  5 Agnostic $40-50k               76</span></span>
<span id="cb3-15"><a href="#cb3-15" tabindex="-1"></a><span class="co">#&gt;  6 Agnostic $50-75k              137</span></span>
<span id="cb3-16"><a href="#cb3-16" tabindex="-1"></a><span class="co">#&gt;  7 Agnostic $75-100k             122</span></span>
<span id="cb3-17"><a href="#cb3-17" tabindex="-1"></a><span class="co">#&gt;  8 Agnostic $100-150k            109</span></span>
<span id="cb3-18"><a href="#cb3-18" tabindex="-1"></a><span class="co">#&gt;  9 Agnostic &gt;150k                 84</span></span>
<span id="cb3-19"><a href="#cb3-19" tabindex="-1"></a><span class="co">#&gt; 10 Agnostic Don&#39;t know/refused    96</span></span>
<span id="cb3-20"><a href="#cb3-20" tabindex="-1"></a><span class="co">#&gt; # ℹ 170 more rows</span></span></code></pre></div>
<ul>
<li><p>The first argument is the dataset to reshape,
<code>relig_income</code>.</p></li>
<li><p><code>cols</code> describes which columns need to be reshaped. In
this case, it’s every column apart from <code>religion</code>.</p></li>
<li><p><code>names_to</code> gives the name of the variable that will be
created from the data stored in the column names,
i.e. <code>income</code>.</p></li>
<li><p><code>values_to</code> gives the name of the variable that will
be created from the data stored in the cell value,
i.e. <code>count</code>.</p></li>
</ul>
<p>Neither the <code>names_to</code> nor the <code>values_to</code>
column exists in <code>relig_income</code>, so we provide them as
strings surrounded by quotes.</p>
</div>
<div id="billboard" class="section level3">
<h3>Numeric data in column names</h3>
<p>The <code>billboard</code> dataset records the billboard rank of
songs in the year 2000. It has a form similar to the
<code>relig_income</code> data, but the data encoded in the column names
is really a number, not a string.</p>
<div class="sourceCode" id="cb4"><pre class="sourceCode r"><code class="sourceCode r"><span id="cb4-1"><a href="#cb4-1" tabindex="-1"></a>billboard</span>
<span id="cb4-2"><a href="#cb4-2" tabindex="-1"></a><span class="co">#&gt; # A tibble: 317 × 79</span></span>
<span id="cb4-3"><a href="#cb4-3" tabindex="-1"></a><span class="co">#&gt;    artist     track date.entered   wk1   wk2   wk3   wk4   wk5   wk6   wk7   wk8</span></span>
<span id="cb4-4"><a href="#cb4-4" tabindex="-1"></a><span class="co">#&gt;    &lt;chr&gt;      &lt;chr&gt; &lt;date&gt;       &lt;dbl&gt; &lt;dbl&gt; &lt;dbl&gt; &lt;dbl&gt; &lt;dbl&gt; &lt;dbl&gt; &lt;dbl&gt; &lt;dbl&gt;</span></span>
<span id="cb4-5"><a href="#cb4-5" tabindex="-1"></a><span class="co">#&gt;  1 2 Pac      Baby… 2000-02-26      87    82    72    77    87    94    99    NA</span></span>
<span id="cb4-6"><a href="#cb4-6" tabindex="-1"></a><span class="co">#&gt;  2 2Ge+her    The … 2000-09-02      91    87    92    NA    NA    NA    NA    NA</span></span>
<span id="cb4-7"><a href="#cb4-7" tabindex="-1"></a><span class="co">#&gt;  3 3 Doors D… Kryp… 2000-04-08      81    70    68    67    66    57    54    53</span></span>
<span id="cb4-8"><a href="#cb4-8" tabindex="-1"></a><span class="co">#&gt;  4 3 Doors D… Loser 2000-10-21      76    76    72    69    67    65    55    59</span></span>
<span id="cb4-9"><a href="#cb4-9" tabindex="-1"></a><span class="co">#&gt;  5 504 Boyz   Wobb… 2000-04-15      57    34    25    17    17    31    36    49</span></span>
<span id="cb4-10"><a href="#cb4-10" tabindex="-1"></a><span class="co">#&gt;  6 98^0       Give… 2000-08-19      51    39    34    26    26    19     2     2</span></span>
<span id="cb4-11"><a href="#cb4-11" tabindex="-1"></a><span class="co">#&gt;  7 A*Teens    Danc… 2000-07-08      97    97    96    95   100    NA    NA    NA</span></span>
<span id="cb4-12"><a href="#cb4-12" tabindex="-1"></a><span class="co">#&gt;  8 Aaliyah    I Do… 2000-01-29      84    62    51    41    38    35    35    38</span></span>
<span id="cb4-13"><a href="#cb4-13" tabindex="-1"></a><span class="co">#&gt;  9 Aaliyah    Try … 2000-03-18      59    53    38    28    21    18    16    14</span></span>
<span id="cb4-14"><a href="#cb4-14" tabindex="-1"></a><span class="co">#&gt; 10 Adams, Yo… Open… 2000-08-26      76    76    74    69    68    67    61    58</span></span>
<span id="cb4-15"><a href="#cb4-15" tabindex="-1"></a><span class="co">#&gt; # ℹ 307 more rows</span></span>
<span id="cb4-16"><a href="#cb4-16" tabindex="-1"></a><span class="co">#&gt; # ℹ 68 more variables: wk9 &lt;dbl&gt;, wk10 &lt;dbl&gt;, wk11 &lt;dbl&gt;, wk12 &lt;dbl&gt;,</span></span>
<span id="cb4-17"><a href="#cb4-17" tabindex="-1"></a><span class="co">#&gt; #   wk13 &lt;dbl&gt;, wk14 &lt;dbl&gt;, wk15 &lt;dbl&gt;, wk16 &lt;dbl&gt;, wk17 &lt;dbl&gt;, wk18 &lt;dbl&gt;,</span></span>
<span id="cb4-18"><a href="#cb4-18" tabindex="-1"></a><span class="co">#&gt; #   wk19 &lt;dbl&gt;, wk20 &lt;dbl&gt;, wk21 &lt;dbl&gt;, wk22 &lt;dbl&gt;, wk23 &lt;dbl&gt;, wk24 &lt;dbl&gt;,</span></span>
<span id="cb4-19"><a href="#cb4-19" tabindex="-1"></a><span class="co">#&gt; #   wk25 &lt;dbl&gt;, wk26 &lt;dbl&gt;, wk27 &lt;dbl&gt;, wk28 &lt;dbl&gt;, wk29 &lt;dbl&gt;, wk30 &lt;dbl&gt;,</span></span>
<span id="cb4-20"><a href="#cb4-20" tabindex="-1"></a><span class="co">#&gt; #   wk31 &lt;dbl&gt;, wk32 &lt;dbl&gt;, wk33 &lt;dbl&gt;, wk34 &lt;dbl&gt;, wk35 &lt;dbl&gt;, wk36 &lt;dbl&gt;,</span></span>
<span id="cb4-21"><a href="#cb4-21" tabindex="-1"></a><span class="co">#&gt; #   wk37 &lt;dbl&gt;, wk38 &lt;dbl&gt;, wk39 &lt;dbl&gt;, wk40 &lt;dbl&gt;, wk41 &lt;dbl&gt;, wk42 &lt;dbl&gt;, …</span></span></code></pre></div>
<p>We can start with the same basic specification as for the
<code>relig_income</code> dataset. Here we want the names to become a
variable called <code>week</code>, and the values to become a variable
called <code>rank</code>. I also use <code>values_drop_na</code> to drop
rows that correspond to missing values. Not every song stays in the
charts for all 76 weeks, so the structure of the input data force the
creation of unnecessary explicit <code>NA</code>s.</p>
<div class="sourceCode" id="cb5"><pre class="sourceCode r"><code class="sourceCode r"><span id="cb5-1"><a href="#cb5-1" tabindex="-1"></a>billboard <span class="sc">%&gt;%</span> </span>
<span id="cb5-2"><a href="#cb5-2" tabindex="-1"></a>  <span class="fu">pivot_longer</span>(</span>
<span id="cb5-3"><a href="#cb5-3" tabindex="-1"></a>    <span class="at">cols =</span> <span class="fu">starts_with</span>(<span class="st">&quot;wk&quot;</span>), </span>
<span id="cb5-4"><a href="#cb5-4" tabindex="-1"></a>    <span class="at">names_to =</span> <span class="st">&quot;week&quot;</span>, </span>
<span id="cb5-5"><a href="#cb5-5" tabindex="-1"></a>    <span class="at">values_to =</span> <span class="st">&quot;rank&quot;</span>,</span>
<span id="cb5-6"><a href="#cb5-6" tabindex="-1"></a>    <span class="at">values_drop_na =</span> <span class="cn">TRUE</span></span>
<span id="cb5-7"><a href="#cb5-7" tabindex="-1"></a>  )</span>
<span id="cb5-8"><a href="#cb5-8" tabindex="-1"></a><span class="co">#&gt; # A tibble: 5,307 × 5</span></span>
<span id="cb5-9"><a href="#cb5-9" tabindex="-1"></a><span class="co">#&gt;    artist  track                   date.entered week   rank</span></span>
<span id="cb5-10"><a href="#cb5-10" tabindex="-1"></a><span class="co">#&gt;    &lt;chr&gt;   &lt;chr&gt;                   &lt;date&gt;       &lt;chr&gt; &lt;dbl&gt;</span></span>
<span id="cb5-11"><a href="#cb5-11" tabindex="-1"></a><span class="co">#&gt;  1 2 Pac   Baby Don&#39;t Cry (Keep... 2000-02-26   wk1      87</span></span>
<span id="cb5-12"><a href="#cb5-12" tabindex="-1"></a><span class="co">#&gt;  2 2 Pac   Baby Don&#39;t Cry (Keep... 2000-02-26   wk2      82</span></span>
<span id="cb5-13"><a href="#cb5-13" tabindex="-1"></a><span class="co">#&gt;  3 2 Pac   Baby Don&#39;t Cry (Keep... 2000-02-26   wk3      72</span></span>
<span id="cb5-14"><a href="#cb5-14" tabindex="-1"></a><span class="co">#&gt;  4 2 Pac   Baby Don&#39;t Cry (Keep... 2000-02-26   wk4      77</span></span>
<span id="cb5-15"><a href="#cb5-15" tabindex="-1"></a><span class="co">#&gt;  5 2 Pac   Baby Don&#39;t Cry (Keep... 2000-02-26   wk5      87</span></span>
<span id="cb5-16"><a href="#cb5-16" tabindex="-1"></a><span class="co">#&gt;  6 2 Pac   Baby Don&#39;t Cry (Keep... 2000-02-26   wk6      94</span></span>
<span id="cb5-17"><a href="#cb5-17" tabindex="-1"></a><span class="co">#&gt;  7 2 Pac   Baby Don&#39;t Cry (Keep... 2000-02-26   wk7      99</span></span>
<span id="cb5-18"><a href="#cb5-18" tabindex="-1"></a><span class="co">#&gt;  8 2Ge+her The Hardest Part Of ... 2000-09-02   wk1      91</span></span>
<span id="cb5-19"><a href="#cb5-19" tabindex="-1"></a><span class="co">#&gt;  9 2Ge+her The Hardest Part Of ... 2000-09-02   wk2      87</span></span>
<span id="cb5-20"><a href="#cb5-20" tabindex="-1"></a><span class="co">#&gt; 10 2Ge+her The Hardest Part Of ... 2000-09-02   wk3      92</span></span>
<span id="cb5-21"><a href="#cb5-21" tabindex="-1"></a><span class="co">#&gt; # ℹ 5,297 more rows</span></span></code></pre></div>
<p>It would be nice to easily determine how long each song stayed in the
charts, but to do that, we’ll need to convert the <code>week</code>
variable to an integer. We can do that by using two additional
arguments: <code>names_prefix</code> strips off the <code>wk</code>
prefix, and <code>names_transform</code> converts <code>week</code> into
an integer:</p>
<div class="sourceCode" id="cb6"><pre class="sourceCode r"><code class="sourceCode r"><span id="cb6-1"><a href="#cb6-1" tabindex="-1"></a>billboard <span class="sc">%&gt;%</span> </span>
<span id="cb6-2"><a href="#cb6-2" tabindex="-1"></a>  <span class="fu">pivot_longer</span>(</span>
<span id="cb6-3"><a href="#cb6-3" tabindex="-1"></a>    <span class="at">cols =</span> <span class="fu">starts_with</span>(<span class="st">&quot;wk&quot;</span>), </span>
<span id="cb6-4"><a href="#cb6-4" tabindex="-1"></a>    <span class="at">names_to =</span> <span class="st">&quot;week&quot;</span>, </span>
<span id="cb6-5"><a href="#cb6-5" tabindex="-1"></a>    <span class="at">names_prefix =</span> <span class="st">&quot;wk&quot;</span>,</span>
<span id="cb6-6"><a href="#cb6-6" tabindex="-1"></a>    <span class="at">names_transform =</span> as.integer,</span>
<span id="cb6-7"><a href="#cb6-7" tabindex="-1"></a>    <span class="at">values_to =</span> <span class="st">&quot;rank&quot;</span>,</span>
<span id="cb6-8"><a href="#cb6-8" tabindex="-1"></a>    <span class="at">values_drop_na =</span> <span class="cn">TRUE</span>,</span>
<span id="cb6-9"><a href="#cb6-9" tabindex="-1"></a>  )</span></code></pre></div>
<p>Alternatively, you could do this with a single argument by using
<code>readr::parse_number()</code> which automatically strips
non-numeric components:</p>
<div class="sourceCode" id="cb7"><pre class="sourceCode r"><code class="sourceCode r"><span id="cb7-1"><a href="#cb7-1" tabindex="-1"></a>billboard <span class="sc">%&gt;%</span> </span>
<span id="cb7-2"><a href="#cb7-2" tabindex="-1"></a>  <span class="fu">pivot_longer</span>(</span>
<span id="cb7-3"><a href="#cb7-3" tabindex="-1"></a>    <span class="at">cols =</span> <span class="fu">starts_with</span>(<span class="st">&quot;wk&quot;</span>), </span>
<span id="cb7-4"><a href="#cb7-4" tabindex="-1"></a>    <span class="at">names_to =</span> <span class="st">&quot;week&quot;</span>, </span>
<span id="cb7-5"><a href="#cb7-5" tabindex="-1"></a>    <span class="at">names_transform =</span> readr<span class="sc">::</span>parse_number,</span>
<span id="cb7-6"><a href="#cb7-6" tabindex="-1"></a>    <span class="at">values_to =</span> <span class="st">&quot;rank&quot;</span>,</span>
<span id="cb7-7"><a href="#cb7-7" tabindex="-1"></a>    <span class="at">values_drop_na =</span> <span class="cn">TRUE</span>,</span>
<span id="cb7-8"><a href="#cb7-8" tabindex="-1"></a>  )</span></code></pre></div>
</div>
<div id="many-variables-in-column-names" class="section level3">
<h3>Many variables in column names</h3>
<p>A more challenging situation occurs when you have multiple variables
crammed into the column names. For example, take the <code>who</code>
dataset:</p>
<div class="sourceCode" id="cb8"><pre class="sourceCode r"><code class="sourceCode r"><span id="cb8-1"><a href="#cb8-1" tabindex="-1"></a>who</span>
<span id="cb8-2"><a href="#cb8-2" tabindex="-1"></a><span class="co">#&gt; # A tibble: 7,240 × 60</span></span>
<span id="cb8-3"><a href="#cb8-3" tabindex="-1"></a><span class="co">#&gt;    country  iso2  iso3   year new_sp_m014 new_sp_m1524 new_sp_m2534 new_sp_m3544</span></span>
<span id="cb8-4"><a href="#cb8-4" tabindex="-1"></a><span class="co">#&gt;    &lt;chr&gt;    &lt;chr&gt; &lt;chr&gt; &lt;dbl&gt;       &lt;dbl&gt;        &lt;dbl&gt;        &lt;dbl&gt;        &lt;dbl&gt;</span></span>
<span id="cb8-5"><a href="#cb8-5" tabindex="-1"></a><span class="co">#&gt;  1 Afghani… AF    AFG    1980          NA           NA           NA           NA</span></span>
<span id="cb8-6"><a href="#cb8-6" tabindex="-1"></a><span class="co">#&gt;  2 Afghani… AF    AFG    1981          NA           NA           NA           NA</span></span>
<span id="cb8-7"><a href="#cb8-7" tabindex="-1"></a><span class="co">#&gt;  3 Afghani… AF    AFG    1982          NA           NA           NA           NA</span></span>
<span id="cb8-8"><a href="#cb8-8" tabindex="-1"></a><span class="co">#&gt;  4 Afghani… AF    AFG    1983          NA           NA           NA           NA</span></span>
<span id="cb8-9"><a href="#cb8-9" tabindex="-1"></a><span class="co">#&gt;  5 Afghani… AF    AFG    1984          NA           NA           NA           NA</span></span>
<span id="cb8-10"><a href="#cb8-10" tabindex="-1"></a><span class="co">#&gt;  6 Afghani… AF    AFG    1985          NA           NA           NA           NA</span></span>
<span id="cb8-11"><a href="#cb8-11" tabindex="-1"></a><span class="co">#&gt;  7 Afghani… AF    AFG    1986          NA           NA           NA           NA</span></span>
<span id="cb8-12"><a href="#cb8-12" tabindex="-1"></a><span class="co">#&gt;  8 Afghani… AF    AFG    1987          NA           NA           NA           NA</span></span>
<span id="cb8-13"><a href="#cb8-13" tabindex="-1"></a><span class="co">#&gt;  9 Afghani… AF    AFG    1988          NA           NA           NA           NA</span></span>
<span id="cb8-14"><a href="#cb8-14" tabindex="-1"></a><span class="co">#&gt; 10 Afghani… AF    AFG    1989          NA           NA           NA           NA</span></span>
<span id="cb8-15"><a href="#cb8-15" tabindex="-1"></a><span class="co">#&gt; # ℹ 7,230 more rows</span></span>
<span id="cb8-16"><a href="#cb8-16" tabindex="-1"></a><span class="co">#&gt; # ℹ 52 more variables: new_sp_m4554 &lt;dbl&gt;, new_sp_m5564 &lt;dbl&gt;,</span></span>
<span id="cb8-17"><a href="#cb8-17" tabindex="-1"></a><span class="co">#&gt; #   new_sp_m65 &lt;dbl&gt;, new_sp_f014 &lt;dbl&gt;, new_sp_f1524 &lt;dbl&gt;,</span></span>
<span id="cb8-18"><a href="#cb8-18" tabindex="-1"></a><span class="co">#&gt; #   new_sp_f2534 &lt;dbl&gt;, new_sp_f3544 &lt;dbl&gt;, new_sp_f4554 &lt;dbl&gt;,</span></span>
<span id="cb8-19"><a href="#cb8-19" tabindex="-1"></a><span class="co">#&gt; #   new_sp_f5564 &lt;dbl&gt;, new_sp_f65 &lt;dbl&gt;, new_sn_m014 &lt;dbl&gt;,</span></span>
<span id="cb8-20"><a href="#cb8-20" tabindex="-1"></a><span class="co">#&gt; #   new_sn_m1524 &lt;dbl&gt;, new_sn_m2534 &lt;dbl&gt;, new_sn_m3544 &lt;dbl&gt;,</span></span>
<span id="cb8-21"><a href="#cb8-21" tabindex="-1"></a><span class="co">#&gt; #   new_sn_m4554 &lt;dbl&gt;, new_sn_m5564 &lt;dbl&gt;, new_sn_m65 &lt;dbl&gt;, …</span></span></code></pre></div>
<p><code>country</code>, <code>iso2</code>, <code>iso3</code>, and
<code>year</code> are already variables, so they can be left as is. But
the columns from <code>new_sp_m014</code> to <code>newrel_f65</code>
encode four variables in their names:</p>
<ul>
<li><p>The <code>new_</code>/<code>new</code> prefix indicates these are
counts of new cases. This dataset only contains new cases, so we’ll
ignore it here because it’s constant.</p></li>
<li><p><code>sp</code>/<code>rel</code>/<code>ep</code> describe how the
case was diagnosed.</p></li>
<li><p><code>m</code>/<code>f</code> gives the gender.</p></li>
<li><p><code>014</code>/<code>1524</code>/<code>2535</code>/<code>3544</code>/<code>4554</code>/<code>65</code>
supplies the age range.</p></li>
</ul>
<p>We can break these variables up by specifying multiple column names
in <code>names_to</code>, and then either providing
<code>names_sep</code> or <code>names_pattern</code>. Here
<code>names_pattern</code> is the most natural fit. It has a similar
interface to <code>extract</code>: you give it a regular expression
containing groups (defined by <code>()</code>) and it puts each group in
a column.</p>
<div class="sourceCode" id="cb9"><pre class="sourceCode r"><code class="sourceCode r"><span id="cb9-1"><a href="#cb9-1" tabindex="-1"></a>who <span class="sc">%&gt;%</span> </span>
<span id="cb9-2"><a href="#cb9-2" tabindex="-1"></a>  <span class="fu">pivot_longer</span>(</span>
<span id="cb9-3"><a href="#cb9-3" tabindex="-1"></a>    <span class="at">cols =</span> new_sp_m014<span class="sc">:</span>newrel_f65,</span>
<span id="cb9-4"><a href="#cb9-4" tabindex="-1"></a>    <span class="at">names_to =</span> <span class="fu">c</span>(<span class="st">&quot;diagnosis&quot;</span>, <span class="st">&quot;gender&quot;</span>, <span class="st">&quot;age&quot;</span>), </span>
<span id="cb9-5"><a href="#cb9-5" tabindex="-1"></a>    <span class="at">names_pattern =</span> <span class="st">&quot;new_?(.*)_(.)(.*)&quot;</span>,</span>
<span id="cb9-6"><a href="#cb9-6" tabindex="-1"></a>    <span class="at">values_to =</span> <span class="st">&quot;count&quot;</span></span>
<span id="cb9-7"><a href="#cb9-7" tabindex="-1"></a>  )</span>
<span id="cb9-8"><a href="#cb9-8" tabindex="-1"></a><span class="co">#&gt; # A tibble: 405,440 × 8</span></span>
<span id="cb9-9"><a href="#cb9-9" tabindex="-1"></a><span class="co">#&gt;    country     iso2  iso3   year diagnosis gender age   count</span></span>
<span id="cb9-10"><a href="#cb9-10" tabindex="-1"></a><span class="co">#&gt;    &lt;chr&gt;       &lt;chr&gt; &lt;chr&gt; &lt;dbl&gt; &lt;chr&gt;     &lt;chr&gt;  &lt;chr&gt; &lt;dbl&gt;</span></span>
<span id="cb9-11"><a href="#cb9-11" tabindex="-1"></a><span class="co">#&gt;  1 Afghanistan AF    AFG    1980 sp        m      014      NA</span></span>
<span id="cb9-12"><a href="#cb9-12" tabindex="-1"></a><span class="co">#&gt;  2 Afghanistan AF    AFG    1980 sp        m      1524     NA</span></span>
<span id="cb9-13"><a href="#cb9-13" tabindex="-1"></a><span class="co">#&gt;  3 Afghanistan AF    AFG    1980 sp        m      2534     NA</span></span>
<span id="cb9-14"><a href="#cb9-14" tabindex="-1"></a><span class="co">#&gt;  4 Afghanistan AF    AFG    1980 sp        m      3544     NA</span></span>
<span id="cb9-15"><a href="#cb9-15" tabindex="-1"></a><span class="co">#&gt;  5 Afghanistan AF    AFG    1980 sp        m      4554     NA</span></span>
<span id="cb9-16"><a href="#cb9-16" tabindex="-1"></a><span class="co">#&gt;  6 Afghanistan AF    AFG    1980 sp        m      5564     NA</span></span>
<span id="cb9-17"><a href="#cb9-17" tabindex="-1"></a><span class="co">#&gt;  7 Afghanistan AF    AFG    1980 sp        m      65       NA</span></span>
<span id="cb9-18"><a href="#cb9-18" tabindex="-1"></a><span class="co">#&gt;  8 Afghanistan AF    AFG    1980 sp        f      014      NA</span></span>
<span id="cb9-19"><a href="#cb9-19" tabindex="-1"></a><span class="co">#&gt;  9 Afghanistan AF    AFG    1980 sp        f      1524     NA</span></span>
<span id="cb9-20"><a href="#cb9-20" tabindex="-1"></a><span class="co">#&gt; 10 Afghanistan AF    AFG    1980 sp        f      2534     NA</span></span>
<span id="cb9-21"><a href="#cb9-21" tabindex="-1"></a><span class="co">#&gt; # ℹ 405,430 more rows</span></span></code></pre></div>
<p>We could go one step further use readr functions to convert the
gender and age to factors. I think this is good practice when you have
categorical variables with a known set of values.</p>
<div class="sourceCode" id="cb10"><pre class="sourceCode r"><code class="sourceCode r"><span id="cb10-1"><a href="#cb10-1" tabindex="-1"></a>who <span class="sc">%&gt;%</span> </span>
<span id="cb10-2"><a href="#cb10-2" tabindex="-1"></a>  <span class="fu">pivot_longer</span>(</span>
<span id="cb10-3"><a href="#cb10-3" tabindex="-1"></a>    <span class="at">cols =</span> new_sp_m014<span class="sc">:</span>newrel_f65,</span>
<span id="cb10-4"><a href="#cb10-4" tabindex="-1"></a>    <span class="at">names_to =</span> <span class="fu">c</span>(<span class="st">&quot;diagnosis&quot;</span>, <span class="st">&quot;gender&quot;</span>, <span class="st">&quot;age&quot;</span>), </span>
<span id="cb10-5"><a href="#cb10-5" tabindex="-1"></a>    <span class="at">names_pattern =</span> <span class="st">&quot;new_?(.*)_(.)(.*)&quot;</span>,</span>
<span id="cb10-6"><a href="#cb10-6" tabindex="-1"></a>    <span class="at">names_transform =</span> <span class="fu">list</span>(</span>
<span id="cb10-7"><a href="#cb10-7" tabindex="-1"></a>      <span class="at">gender =</span> <span class="sc">~</span> readr<span class="sc">::</span><span class="fu">parse_factor</span>(.x, <span class="at">levels =</span> <span class="fu">c</span>(<span class="st">&quot;f&quot;</span>, <span class="st">&quot;m&quot;</span>)),</span>
<span id="cb10-8"><a href="#cb10-8" tabindex="-1"></a>      <span class="at">age =</span> <span class="sc">~</span> readr<span class="sc">::</span><span class="fu">parse_factor</span>(</span>
<span id="cb10-9"><a href="#cb10-9" tabindex="-1"></a>        .x,</span>
<span id="cb10-10"><a href="#cb10-10" tabindex="-1"></a>        <span class="at">levels =</span> <span class="fu">c</span>(<span class="st">&quot;014&quot;</span>, <span class="st">&quot;1524&quot;</span>, <span class="st">&quot;2534&quot;</span>, <span class="st">&quot;3544&quot;</span>, <span class="st">&quot;4554&quot;</span>, <span class="st">&quot;5564&quot;</span>, <span class="st">&quot;65&quot;</span>), </span>
<span id="cb10-11"><a href="#cb10-11" tabindex="-1"></a>        <span class="at">ordered =</span> <span class="cn">TRUE</span></span>
<span id="cb10-12"><a href="#cb10-12" tabindex="-1"></a>      )</span>
<span id="cb10-13"><a href="#cb10-13" tabindex="-1"></a>    ),</span>
<span id="cb10-14"><a href="#cb10-14" tabindex="-1"></a>    <span class="at">values_to =</span> <span class="st">&quot;count&quot;</span>,</span>
<span id="cb10-15"><a href="#cb10-15" tabindex="-1"></a>)</span></code></pre></div>
<p>Doing it this way is a little more efficient than doing a mutate
after the fact, <code>pivot_longer()</code> only has to transform one
occurence of each name where a <code>mutate()</code> would need to
transform many repetitions.</p>
</div>
<div id="multiple-observations-per-row" class="section level3">
<h3>Multiple observations per row</h3>
<p>So far, we have been working with data frames that have one
observation per row, but many important pivoting problems involve
multiple observations per row. You can usually recognise this case
because name of the column that you want to appear in the output is part
of the column name in the input. In this section, you’ll learn how to
pivot this sort of data.</p>
<p>The following example is adapted from the <a href="https://CRAN.R-project.org/package=data.table/vignettes/datatable-reshape.html">data.table
vignette</a>, as inspiration for tidyr’s solution to this problem.</p>
<div class="sourceCode" id="cb11"><pre class="sourceCode r"><code class="sourceCode r"><span id="cb11-1"><a href="#cb11-1" tabindex="-1"></a>household</span>
<span id="cb11-2"><a href="#cb11-2" tabindex="-1"></a><span class="co">#&gt; # A tibble: 5 × 5</span></span>
<span id="cb11-3"><a href="#cb11-3" tabindex="-1"></a><span class="co">#&gt;   family dob_child1 dob_child2 name_child1 name_child2</span></span>
<span id="cb11-4"><a href="#cb11-4" tabindex="-1"></a><span class="co">#&gt;    &lt;int&gt; &lt;date&gt;     &lt;date&gt;     &lt;chr&gt;       &lt;chr&gt;      </span></span>
<span id="cb11-5"><a href="#cb11-5" tabindex="-1"></a><span class="co">#&gt; 1      1 1998-11-26 2000-01-29 Susan       Jose       </span></span>
<span id="cb11-6"><a href="#cb11-6" tabindex="-1"></a><span class="co">#&gt; 2      2 1996-06-22 NA         Mark        &lt;NA&gt;       </span></span>
<span id="cb11-7"><a href="#cb11-7" tabindex="-1"></a><span class="co">#&gt; 3      3 2002-07-11 2004-04-05 Sam         Seth       </span></span>
<span id="cb11-8"><a href="#cb11-8" tabindex="-1"></a><span class="co">#&gt; 4      4 2004-10-10 2009-08-27 Craig       Khai       </span></span>
<span id="cb11-9"><a href="#cb11-9" tabindex="-1"></a><span class="co">#&gt; 5      5 2000-12-05 2005-02-28 Parker      Gracie</span></span></code></pre></div>
<p>Note that we have two pieces of information (or values) for each
child: their <code>name</code> and their <code>dob</code> (date of
birth). These need to go into separate columns in the result. Again we
supply multiple variables to <code>names_to</code>, using
<code>names_sep</code> to split up each variable name. Note the special
name <code>.value</code>: this tells <code>pivot_longer()</code> that
that part of the column name specifies the “value” being measured (which
will become a variable in the output).</p>
<div class="sourceCode" id="cb12"><pre class="sourceCode r"><code class="sourceCode r"><span id="cb12-1"><a href="#cb12-1" tabindex="-1"></a>household <span class="sc">%&gt;%</span> </span>
<span id="cb12-2"><a href="#cb12-2" tabindex="-1"></a>  <span class="fu">pivot_longer</span>(</span>
<span id="cb12-3"><a href="#cb12-3" tabindex="-1"></a>    <span class="at">cols =</span> <span class="sc">!</span>family, </span>
<span id="cb12-4"><a href="#cb12-4" tabindex="-1"></a>    <span class="at">names_to =</span> <span class="fu">c</span>(<span class="st">&quot;.value&quot;</span>, <span class="st">&quot;child&quot;</span>), </span>
<span id="cb12-5"><a href="#cb12-5" tabindex="-1"></a>    <span class="at">names_sep =</span> <span class="st">&quot;_&quot;</span>, </span>
<span id="cb12-6"><a href="#cb12-6" tabindex="-1"></a>    <span class="at">values_drop_na =</span> <span class="cn">TRUE</span></span>
<span id="cb12-7"><a href="#cb12-7" tabindex="-1"></a>  )</span>
<span id="cb12-8"><a href="#cb12-8" tabindex="-1"></a><span class="co">#&gt; # A tibble: 9 × 4</span></span>
<span id="cb12-9"><a href="#cb12-9" tabindex="-1"></a><span class="co">#&gt;   family child  dob        name  </span></span>
<span id="cb12-10"><a href="#cb12-10" tabindex="-1"></a><span class="co">#&gt;    &lt;int&gt; &lt;chr&gt;  &lt;date&gt;     &lt;chr&gt; </span></span>
<span id="cb12-11"><a href="#cb12-11" tabindex="-1"></a><span class="co">#&gt; 1      1 child1 1998-11-26 Susan </span></span>
<span id="cb12-12"><a href="#cb12-12" tabindex="-1"></a><span class="co">#&gt; 2      1 child2 2000-01-29 Jose  </span></span>
<span id="cb12-13"><a href="#cb12-13" tabindex="-1"></a><span class="co">#&gt; 3      2 child1 1996-06-22 Mark  </span></span>
<span id="cb12-14"><a href="#cb12-14" tabindex="-1"></a><span class="co">#&gt; 4      3 child1 2002-07-11 Sam   </span></span>
<span id="cb12-15"><a href="#cb12-15" tabindex="-1"></a><span class="co">#&gt; 5      3 child2 2004-04-05 Seth  </span></span>
<span id="cb12-16"><a href="#cb12-16" tabindex="-1"></a><span class="co">#&gt; 6      4 child1 2004-10-10 Craig </span></span>
<span id="cb12-17"><a href="#cb12-17" tabindex="-1"></a><span class="co">#&gt; 7      4 child2 2009-08-27 Khai  </span></span>
<span id="cb12-18"><a href="#cb12-18" tabindex="-1"></a><span class="co">#&gt; 8      5 child1 2000-12-05 Parker</span></span>
<span id="cb12-19"><a href="#cb12-19" tabindex="-1"></a><span class="co">#&gt; 9      5 child2 2005-02-28 Gracie</span></span></code></pre></div>
<p>Note the use of <code>values_drop_na = TRUE</code>: the input shape
forces the creation of explicit missing variables for observations that
don’t exist.</p>
<p>A similar problem problem also exists in the <code>anscombe</code>
dataset built in to base R:</p>
<div class="sourceCode" id="cb13"><pre class="sourceCode r"><code class="sourceCode r"><span id="cb13-1"><a href="#cb13-1" tabindex="-1"></a>anscombe</span>
<span id="cb13-2"><a href="#cb13-2" tabindex="-1"></a><span class="co">#&gt;    x1 x2 x3 x4    y1   y2    y3    y4</span></span>
<span id="cb13-3"><a href="#cb13-3" tabindex="-1"></a><span class="co">#&gt; 1  10 10 10  8  8.04 9.14  7.46  6.58</span></span>
<span id="cb13-4"><a href="#cb13-4" tabindex="-1"></a><span class="co">#&gt; 2   8  8  8  8  6.95 8.14  6.77  5.76</span></span>
<span id="cb13-5"><a href="#cb13-5" tabindex="-1"></a><span class="co">#&gt; 3  13 13 13  8  7.58 8.74 12.74  7.71</span></span>
<span id="cb13-6"><a href="#cb13-6" tabindex="-1"></a><span class="co">#&gt; 4   9  9  9  8  8.81 8.77  7.11  8.84</span></span>
<span id="cb13-7"><a href="#cb13-7" tabindex="-1"></a><span class="co">#&gt; 5  11 11 11  8  8.33 9.26  7.81  8.47</span></span>
<span id="cb13-8"><a href="#cb13-8" tabindex="-1"></a><span class="co">#&gt; 6  14 14 14  8  9.96 8.10  8.84  7.04</span></span>
<span id="cb13-9"><a href="#cb13-9" tabindex="-1"></a><span class="co">#&gt; 7   6  6  6  8  7.24 6.13  6.08  5.25</span></span>
<span id="cb13-10"><a href="#cb13-10" tabindex="-1"></a><span class="co">#&gt; 8   4  4  4 19  4.26 3.10  5.39 12.50</span></span>
<span id="cb13-11"><a href="#cb13-11" tabindex="-1"></a><span class="co">#&gt; 9  12 12 12  8 10.84 9.13  8.15  5.56</span></span>
<span id="cb13-12"><a href="#cb13-12" tabindex="-1"></a><span class="co">#&gt; 10  7  7  7  8  4.82 7.26  6.42  7.91</span></span>
<span id="cb13-13"><a href="#cb13-13" tabindex="-1"></a><span class="co">#&gt; 11  5  5  5  8  5.68 4.74  5.73  6.89</span></span></code></pre></div>
<p>This dataset contains four pairs of variables (<code>x1</code> and
<code>y1</code>, <code>x2</code> and <code>y2</code>, etc) that underlie
Anscombe’s quartet, a collection of four datasets that have the same
summary statistics (mean, sd, correlation etc), but have quite different
data. We want to produce a dataset with columns <code>set</code>,
<code>x</code> and <code>y</code>.</p>
<div class="sourceCode" id="cb14"><pre class="sourceCode r"><code class="sourceCode r"><span id="cb14-1"><a href="#cb14-1" tabindex="-1"></a>anscombe <span class="sc">%&gt;%</span> </span>
<span id="cb14-2"><a href="#cb14-2" tabindex="-1"></a>  <span class="fu">pivot_longer</span>(</span>
<span id="cb14-3"><a href="#cb14-3" tabindex="-1"></a>    <span class="at">cols =</span> <span class="fu">everything</span>(), </span>
<span id="cb14-4"><a href="#cb14-4" tabindex="-1"></a>    <span class="at">cols_vary =</span> <span class="st">&quot;slowest&quot;</span>,</span>
<span id="cb14-5"><a href="#cb14-5" tabindex="-1"></a>    <span class="at">names_to =</span> <span class="fu">c</span>(<span class="st">&quot;.value&quot;</span>, <span class="st">&quot;set&quot;</span>), </span>
<span id="cb14-6"><a href="#cb14-6" tabindex="-1"></a>    <span class="at">names_pattern =</span> <span class="st">&quot;(.)(.)&quot;</span></span>
<span id="cb14-7"><a href="#cb14-7" tabindex="-1"></a>  )</span>
<span id="cb14-8"><a href="#cb14-8" tabindex="-1"></a><span class="co">#&gt; # A tibble: 44 × 3</span></span>
<span id="cb14-9"><a href="#cb14-9" tabindex="-1"></a><span class="co">#&gt;    set       x     y</span></span>
<span id="cb14-10"><a href="#cb14-10" tabindex="-1"></a><span class="co">#&gt;    &lt;chr&gt; &lt;dbl&gt; &lt;dbl&gt;</span></span>
<span id="cb14-11"><a href="#cb14-11" tabindex="-1"></a><span class="co">#&gt;  1 1        10  8.04</span></span>
<span id="cb14-12"><a href="#cb14-12" tabindex="-1"></a><span class="co">#&gt;  2 1         8  6.95</span></span>
<span id="cb14-13"><a href="#cb14-13" tabindex="-1"></a><span class="co">#&gt;  3 1        13  7.58</span></span>
<span id="cb14-14"><a href="#cb14-14" tabindex="-1"></a><span class="co">#&gt;  4 1         9  8.81</span></span>
<span id="cb14-15"><a href="#cb14-15" tabindex="-1"></a><span class="co">#&gt;  5 1        11  8.33</span></span>
<span id="cb14-16"><a href="#cb14-16" tabindex="-1"></a><span class="co">#&gt;  6 1        14  9.96</span></span>
<span id="cb14-17"><a href="#cb14-17" tabindex="-1"></a><span class="co">#&gt;  7 1         6  7.24</span></span>
<span id="cb14-18"><a href="#cb14-18" tabindex="-1"></a><span class="co">#&gt;  8 1         4  4.26</span></span>
<span id="cb14-19"><a href="#cb14-19" tabindex="-1"></a><span class="co">#&gt;  9 1        12 10.8 </span></span>
<span id="cb14-20"><a href="#cb14-20" tabindex="-1"></a><span class="co">#&gt; 10 1         7  4.82</span></span>
<span id="cb14-21"><a href="#cb14-21" tabindex="-1"></a><span class="co">#&gt; # ℹ 34 more rows</span></span></code></pre></div>
<p>Setting <code>cols_vary</code> to <code>&quot;slowest&quot;</code> groups the
values from columns <code>x1</code> and <code>y1</code> together in the
rows of the output before moving on to <code>x2</code> and
<code>y2</code>. This argument often produces more intuitively ordered
output when you are pivoting every column in your dataset.</p>
<p>A similar situation can arise with panel data. For example, take this
example dataset provided by <a href="https://github.com/gesistsa/rio/issues/193">Thomas Leeper</a>. We
can tidy it using the same approach as for <code>anscombe</code>:</p>
<div class="sourceCode" id="cb15"><pre class="sourceCode r"><code class="sourceCode r"><span id="cb15-1"><a href="#cb15-1" tabindex="-1"></a>pnl <span class="ot">&lt;-</span> <span class="fu">tibble</span>(</span>
<span id="cb15-2"><a href="#cb15-2" tabindex="-1"></a>  <span class="at">x =</span> <span class="dv">1</span><span class="sc">:</span><span class="dv">4</span>,</span>
<span id="cb15-3"><a href="#cb15-3" tabindex="-1"></a>  <span class="at">a =</span> <span class="fu">c</span>(<span class="dv">1</span>, <span class="dv">1</span>,<span class="dv">0</span>, <span class="dv">0</span>),</span>
<span id="cb15-4"><a href="#cb15-4" tabindex="-1"></a>  <span class="at">b =</span> <span class="fu">c</span>(<span class="dv">0</span>, <span class="dv">1</span>, <span class="dv">1</span>, <span class="dv">1</span>),</span>
<span id="cb15-5"><a href="#cb15-5" tabindex="-1"></a>  <span class="at">y1 =</span> <span class="fu">rnorm</span>(<span class="dv">4</span>),</span>
<span id="cb15-6"><a href="#cb15-6" tabindex="-1"></a>  <span class="at">y2 =</span> <span class="fu">rnorm</span>(<span class="dv">4</span>),</span>
<span id="cb15-7"><a href="#cb15-7" tabindex="-1"></a>  <span class="at">z1 =</span> <span class="fu">rep</span>(<span class="dv">3</span>, <span class="dv">4</span>),</span>
<span id="cb15-8"><a href="#cb15-8" tabindex="-1"></a>  <span class="at">z2 =</span> <span class="fu">rep</span>(<span class="sc">-</span><span class="dv">2</span>, <span class="dv">4</span>),</span>
<span id="cb15-9"><a href="#cb15-9" tabindex="-1"></a>)</span>
<span id="cb15-10"><a href="#cb15-10" tabindex="-1"></a></span>
<span id="cb15-11"><a href="#cb15-11" tabindex="-1"></a>pnl <span class="sc">%&gt;%</span> </span>
<span id="cb15-12"><a href="#cb15-12" tabindex="-1"></a>  <span class="fu">pivot_longer</span>(</span>
<span id="cb15-13"><a href="#cb15-13" tabindex="-1"></a>    <span class="at">cols =</span> <span class="sc">!</span><span class="fu">c</span>(x, a, b), </span>
<span id="cb15-14"><a href="#cb15-14" tabindex="-1"></a>    <span class="at">names_to =</span> <span class="fu">c</span>(<span class="st">&quot;.value&quot;</span>, <span class="st">&quot;time&quot;</span>), </span>
<span id="cb15-15"><a href="#cb15-15" tabindex="-1"></a>    <span class="at">names_pattern =</span> <span class="st">&quot;(.)(.)&quot;</span></span>
<span id="cb15-16"><a href="#cb15-16" tabindex="-1"></a>  )</span>
<span id="cb15-17"><a href="#cb15-17" tabindex="-1"></a><span class="co">#&gt; # A tibble: 8 × 6</span></span>
<span id="cb15-18"><a href="#cb15-18" tabindex="-1"></a><span class="co">#&gt;       x     a     b time       y     z</span></span>
<span id="cb15-19"><a href="#cb15-19" tabindex="-1"></a><span class="co">#&gt;   &lt;int&gt; &lt;dbl&gt; &lt;dbl&gt; &lt;chr&gt;  &lt;dbl&gt; &lt;dbl&gt;</span></span>
<span id="cb15-20"><a href="#cb15-20" tabindex="-1"></a><span class="co">#&gt; 1     1     1     0 1     -0.516     3</span></span>
<span id="cb15-21"><a href="#cb15-21" tabindex="-1"></a><span class="co">#&gt; 2     1     1     0 2      2.48     -2</span></span>
<span id="cb15-22"><a href="#cb15-22" tabindex="-1"></a><span class="co">#&gt; 3     2     1     1 1      0.240     3</span></span>
<span id="cb15-23"><a href="#cb15-23" tabindex="-1"></a><span class="co">#&gt; 4     2     1     1 2      0.233    -2</span></span>
<span id="cb15-24"><a href="#cb15-24" tabindex="-1"></a><span class="co">#&gt; 5     3     0     1 1     -1.33      3</span></span>
<span id="cb15-25"><a href="#cb15-25" tabindex="-1"></a><span class="co">#&gt; 6     3     0     1 2     -0.986    -2</span></span>
<span id="cb15-26"><a href="#cb15-26" tabindex="-1"></a><span class="co">#&gt; 7     4     0     1 1      0.401     3</span></span>
<span id="cb15-27"><a href="#cb15-27" tabindex="-1"></a><span class="co">#&gt; 8     4     0     1 2     -0.965    -2</span></span></code></pre></div>
</div>
</div>
<div id="wider" class="section level2">
<h2>Wider</h2>
<p><code>pivot_wider()</code> is the opposite of
<code>pivot_longer()</code>: it makes a dataset <strong>wider</strong>
by increasing the number of columns and decreasing the number of rows.
It’s relatively rare to need <code>pivot_wider()</code> to make tidy
data, but it’s often useful for creating summary tables for
presentation, or data in a format needed by other tools.</p>
<div id="capture-recapture-data" class="section level3">
<h3>Capture-recapture data</h3>
<p>The <code>fish_encounters</code> dataset, contributed by <a href="https://fishsciences.github.io/post/visualizing-fish-encounter-histories/">Myfanwy
Johnston</a>, describes when fish swimming down a river are detected by
automatic monitoring stations:</p>
<div class="sourceCode" id="cb16"><pre class="sourceCode r"><code class="sourceCode r"><span id="cb16-1"><a href="#cb16-1" tabindex="-1"></a>fish_encounters</span>
<span id="cb16-2"><a href="#cb16-2" tabindex="-1"></a><span class="co">#&gt; # A tibble: 114 × 3</span></span>
<span id="cb16-3"><a href="#cb16-3" tabindex="-1"></a><span class="co">#&gt;    fish  station  seen</span></span>
<span id="cb16-4"><a href="#cb16-4" tabindex="-1"></a><span class="co">#&gt;    &lt;fct&gt; &lt;fct&gt;   &lt;int&gt;</span></span>
<span id="cb16-5"><a href="#cb16-5" tabindex="-1"></a><span class="co">#&gt;  1 4842  Release     1</span></span>
<span id="cb16-6"><a href="#cb16-6" tabindex="-1"></a><span class="co">#&gt;  2 4842  I80_1       1</span></span>
<span id="cb16-7"><a href="#cb16-7" tabindex="-1"></a><span class="co">#&gt;  3 4842  Lisbon      1</span></span>
<span id="cb16-8"><a href="#cb16-8" tabindex="-1"></a><span class="co">#&gt;  4 4842  Rstr        1</span></span>
<span id="cb16-9"><a href="#cb16-9" tabindex="-1"></a><span class="co">#&gt;  5 4842  Base_TD     1</span></span>
<span id="cb16-10"><a href="#cb16-10" tabindex="-1"></a><span class="co">#&gt;  6 4842  BCE         1</span></span>
<span id="cb16-11"><a href="#cb16-11" tabindex="-1"></a><span class="co">#&gt;  7 4842  BCW         1</span></span>
<span id="cb16-12"><a href="#cb16-12" tabindex="-1"></a><span class="co">#&gt;  8 4842  BCE2        1</span></span>
<span id="cb16-13"><a href="#cb16-13" tabindex="-1"></a><span class="co">#&gt;  9 4842  BCW2        1</span></span>
<span id="cb16-14"><a href="#cb16-14" tabindex="-1"></a><span class="co">#&gt; 10 4842  MAE         1</span></span>
<span id="cb16-15"><a href="#cb16-15" tabindex="-1"></a><span class="co">#&gt; # ℹ 104 more rows</span></span></code></pre></div>
<p>Many tools used to analyse this data need it in a form where each
station is a column:</p>
<div class="sourceCode" id="cb17"><pre class="sourceCode r"><code class="sourceCode r"><span id="cb17-1"><a href="#cb17-1" tabindex="-1"></a>fish_encounters <span class="sc">%&gt;%</span> </span>
<span id="cb17-2"><a href="#cb17-2" tabindex="-1"></a>  <span class="fu">pivot_wider</span>(</span>
<span id="cb17-3"><a href="#cb17-3" tabindex="-1"></a>    <span class="at">names_from =</span> station, </span>
<span id="cb17-4"><a href="#cb17-4" tabindex="-1"></a>    <span class="at">values_from =</span> seen</span>
<span id="cb17-5"><a href="#cb17-5" tabindex="-1"></a>  )</span>
<span id="cb17-6"><a href="#cb17-6" tabindex="-1"></a><span class="co">#&gt; # A tibble: 19 × 12</span></span>
<span id="cb17-7"><a href="#cb17-7" tabindex="-1"></a><span class="co">#&gt;    fish  Release I80_1 Lisbon  Rstr Base_TD   BCE   BCW  BCE2  BCW2   MAE   MAW</span></span>
<span id="cb17-8"><a href="#cb17-8" tabindex="-1"></a><span class="co">#&gt;    &lt;fct&gt;   &lt;int&gt; &lt;int&gt;  &lt;int&gt; &lt;int&gt;   &lt;int&gt; &lt;int&gt; &lt;int&gt; &lt;int&gt; &lt;int&gt; &lt;int&gt; &lt;int&gt;</span></span>
<span id="cb17-9"><a href="#cb17-9" tabindex="-1"></a><span class="co">#&gt;  1 4842        1     1      1     1       1     1     1     1     1     1     1</span></span>
<span id="cb17-10"><a href="#cb17-10" tabindex="-1"></a><span class="co">#&gt;  2 4843        1     1      1     1       1     1     1     1     1     1     1</span></span>
<span id="cb17-11"><a href="#cb17-11" tabindex="-1"></a><span class="co">#&gt;  3 4844        1     1      1     1       1     1     1     1     1     1     1</span></span>
<span id="cb17-12"><a href="#cb17-12" tabindex="-1"></a><span class="co">#&gt;  4 4845        1     1      1     1       1    NA    NA    NA    NA    NA    NA</span></span>
<span id="cb17-13"><a href="#cb17-13" tabindex="-1"></a><span class="co">#&gt;  5 4847        1     1      1    NA      NA    NA    NA    NA    NA    NA    NA</span></span>
<span id="cb17-14"><a href="#cb17-14" tabindex="-1"></a><span class="co">#&gt;  6 4848        1     1      1     1      NA    NA    NA    NA    NA    NA    NA</span></span>
<span id="cb17-15"><a href="#cb17-15" tabindex="-1"></a><span class="co">#&gt;  7 4849        1     1     NA    NA      NA    NA    NA    NA    NA    NA    NA</span></span>
<span id="cb17-16"><a href="#cb17-16" tabindex="-1"></a><span class="co">#&gt;  8 4850        1     1     NA     1       1     1     1    NA    NA    NA    NA</span></span>
<span id="cb17-17"><a href="#cb17-17" tabindex="-1"></a><span class="co">#&gt;  9 4851        1     1     NA    NA      NA    NA    NA    NA    NA    NA    NA</span></span>
<span id="cb17-18"><a href="#cb17-18" tabindex="-1"></a><span class="co">#&gt; 10 4854        1     1     NA    NA      NA    NA    NA    NA    NA    NA    NA</span></span>
<span id="cb17-19"><a href="#cb17-19" tabindex="-1"></a><span class="co">#&gt; # ℹ 9 more rows</span></span></code></pre></div>
<p>This dataset only records when a fish was detected by the station -
it doesn’t record when it wasn’t detected (this is common with this type
of data). That means the output data is filled with <code>NA</code>s.
However, in this case we know that the absence of a record means that
the fish was not <code>seen</code>, so we can ask
<code>pivot_wider()</code> to fill these missing values in with
zeros:</p>
<div class="sourceCode" id="cb18"><pre class="sourceCode r"><code class="sourceCode r"><span id="cb18-1"><a href="#cb18-1" tabindex="-1"></a>fish_encounters <span class="sc">%&gt;%</span> </span>
<span id="cb18-2"><a href="#cb18-2" tabindex="-1"></a>  <span class="fu">pivot_wider</span>(</span>
<span id="cb18-3"><a href="#cb18-3" tabindex="-1"></a>    <span class="at">names_from =</span> station, </span>
<span id="cb18-4"><a href="#cb18-4" tabindex="-1"></a>    <span class="at">values_from =</span> seen,</span>
<span id="cb18-5"><a href="#cb18-5" tabindex="-1"></a>    <span class="at">values_fill =</span> <span class="dv">0</span></span>
<span id="cb18-6"><a href="#cb18-6" tabindex="-1"></a>  )</span>
<span id="cb18-7"><a href="#cb18-7" tabindex="-1"></a><span class="co">#&gt; # A tibble: 19 × 12</span></span>
<span id="cb18-8"><a href="#cb18-8" tabindex="-1"></a><span class="co">#&gt;    fish  Release I80_1 Lisbon  Rstr Base_TD   BCE   BCW  BCE2  BCW2   MAE   MAW</span></span>
<span id="cb18-9"><a href="#cb18-9" tabindex="-1"></a><span class="co">#&gt;    &lt;fct&gt;   &lt;int&gt; &lt;int&gt;  &lt;int&gt; &lt;int&gt;   &lt;int&gt; &lt;int&gt; &lt;int&gt; &lt;int&gt; &lt;int&gt; &lt;int&gt; &lt;int&gt;</span></span>
<span id="cb18-10"><a href="#cb18-10" tabindex="-1"></a><span class="co">#&gt;  1 4842        1     1      1     1       1     1     1     1     1     1     1</span></span>
<span id="cb18-11"><a href="#cb18-11" tabindex="-1"></a><span class="co">#&gt;  2 4843        1     1      1     1       1     1     1     1     1     1     1</span></span>
<span id="cb18-12"><a href="#cb18-12" tabindex="-1"></a><span class="co">#&gt;  3 4844        1     1      1     1       1     1     1     1     1     1     1</span></span>
<span id="cb18-13"><a href="#cb18-13" tabindex="-1"></a><span class="co">#&gt;  4 4845        1     1      1     1       1     0     0     0     0     0     0</span></span>
<span id="cb18-14"><a href="#cb18-14" tabindex="-1"></a><span class="co">#&gt;  5 4847        1     1      1     0       0     0     0     0     0     0     0</span></span>
<span id="cb18-15"><a href="#cb18-15" tabindex="-1"></a><span class="co">#&gt;  6 4848        1     1      1     1       0     0     0     0     0     0     0</span></span>
<span id="cb18-16"><a href="#cb18-16" tabindex="-1"></a><span class="co">#&gt;  7 4849        1     1      0     0       0     0     0     0     0     0     0</span></span>
<span id="cb18-17"><a href="#cb18-17" tabindex="-1"></a><span class="co">#&gt;  8 4850        1     1      0     1       1     1     1     0     0     0     0</span></span>
<span id="cb18-18"><a href="#cb18-18" tabindex="-1"></a><span class="co">#&gt;  9 4851        1     1      0     0       0     0     0     0     0     0     0</span></span>
<span id="cb18-19"><a href="#cb18-19" tabindex="-1"></a><span class="co">#&gt; 10 4854        1     1      0     0       0     0     0     0     0     0     0</span></span>
<span id="cb18-20"><a href="#cb18-20" tabindex="-1"></a><span class="co">#&gt; # ℹ 9 more rows</span></span></code></pre></div>
</div>
<div id="aggregation" class="section level3">
<h3>Aggregation</h3>
<p>You can also use <code>pivot_wider()</code> to perform simple
aggregation. For example, take the <code>warpbreaks</code> dataset built
in to base R (converted to a tibble for the better print method):</p>
<div class="sourceCode" id="cb19"><pre class="sourceCode r"><code class="sourceCode r"><span id="cb19-1"><a href="#cb19-1" tabindex="-1"></a>warpbreaks <span class="ot">&lt;-</span> warpbreaks <span class="sc">%&gt;%</span> </span>
<span id="cb19-2"><a href="#cb19-2" tabindex="-1"></a>  <span class="fu">as_tibble</span>() <span class="sc">%&gt;%</span> </span>
<span id="cb19-3"><a href="#cb19-3" tabindex="-1"></a>  <span class="fu">select</span>(wool, tension, breaks)</span>
<span id="cb19-4"><a href="#cb19-4" tabindex="-1"></a>warpbreaks</span>
<span id="cb19-5"><a href="#cb19-5" tabindex="-1"></a><span class="co">#&gt; # A tibble: 54 × 3</span></span>
<span id="cb19-6"><a href="#cb19-6" tabindex="-1"></a><span class="co">#&gt;    wool  tension breaks</span></span>
<span id="cb19-7"><a href="#cb19-7" tabindex="-1"></a><span class="co">#&gt;    &lt;fct&gt; &lt;fct&gt;    &lt;dbl&gt;</span></span>
<span id="cb19-8"><a href="#cb19-8" tabindex="-1"></a><span class="co">#&gt;  1 A     L           26</span></span>
<span id="cb19-9"><a href="#cb19-9" tabindex="-1"></a><span class="co">#&gt;  2 A     L           30</span></span>
<span id="cb19-10"><a href="#cb19-10" tabindex="-1"></a><span class="co">#&gt;  3 A     L           54</span></span>
<span id="cb19-11"><a href="#cb19-11" tabindex="-1"></a><span class="co">#&gt;  4 A     L           25</span></span>
<span id="cb19-12"><a href="#cb19-12" tabindex="-1"></a><span class="co">#&gt;  5 A     L           70</span></span>
<span id="cb19-13"><a href="#cb19-13" tabindex="-1"></a><span class="co">#&gt;  6 A     L           52</span></span>
<span id="cb19-14"><a href="#cb19-14" tabindex="-1"></a><span class="co">#&gt;  7 A     L           51</span></span>
<span id="cb19-15"><a href="#cb19-15" tabindex="-1"></a><span class="co">#&gt;  8 A     L           26</span></span>
<span id="cb19-16"><a href="#cb19-16" tabindex="-1"></a><span class="co">#&gt;  9 A     L           67</span></span>
<span id="cb19-17"><a href="#cb19-17" tabindex="-1"></a><span class="co">#&gt; 10 A     M           18</span></span>
<span id="cb19-18"><a href="#cb19-18" tabindex="-1"></a><span class="co">#&gt; # ℹ 44 more rows</span></span></code></pre></div>
<p>This is a designed experiment with nine replicates for every
combination of <code>wool</code> (<code>A</code> and <code>B</code>) and
<code>tension</code> (<code>L</code>, <code>M</code>,
<code>H</code>):</p>
<div class="sourceCode" id="cb20"><pre class="sourceCode r"><code class="sourceCode r"><span id="cb20-1"><a href="#cb20-1" tabindex="-1"></a>warpbreaks <span class="sc">%&gt;%</span> </span>
<span id="cb20-2"><a href="#cb20-2" tabindex="-1"></a>  <span class="fu">count</span>(wool, tension)</span>
<span id="cb20-3"><a href="#cb20-3" tabindex="-1"></a><span class="co">#&gt; # A tibble: 6 × 3</span></span>
<span id="cb20-4"><a href="#cb20-4" tabindex="-1"></a><span class="co">#&gt;   wool  tension     n</span></span>
<span id="cb20-5"><a href="#cb20-5" tabindex="-1"></a><span class="co">#&gt;   &lt;fct&gt; &lt;fct&gt;   &lt;int&gt;</span></span>
<span id="cb20-6"><a href="#cb20-6" tabindex="-1"></a><span class="co">#&gt; 1 A     L           9</span></span>
<span id="cb20-7"><a href="#cb20-7" tabindex="-1"></a><span class="co">#&gt; 2 A     M           9</span></span>
<span id="cb20-8"><a href="#cb20-8" tabindex="-1"></a><span class="co">#&gt; 3 A     H           9</span></span>
<span id="cb20-9"><a href="#cb20-9" tabindex="-1"></a><span class="co">#&gt; 4 B     L           9</span></span>
<span id="cb20-10"><a href="#cb20-10" tabindex="-1"></a><span class="co">#&gt; 5 B     M           9</span></span>
<span id="cb20-11"><a href="#cb20-11" tabindex="-1"></a><span class="co">#&gt; 6 B     H           9</span></span></code></pre></div>
<p>What happens if we attempt to pivot the levels of <code>wool</code>
into the columns?</p>
<div class="sourceCode" id="cb21"><pre class="sourceCode r"><code class="sourceCode r"><span id="cb21-1"><a href="#cb21-1" tabindex="-1"></a>warpbreaks <span class="sc">%&gt;%</span> </span>
<span id="cb21-2"><a href="#cb21-2" tabindex="-1"></a>  <span class="fu">pivot_wider</span>(</span>
<span id="cb21-3"><a href="#cb21-3" tabindex="-1"></a>    <span class="at">names_from =</span> wool, </span>
<span id="cb21-4"><a href="#cb21-4" tabindex="-1"></a>    <span class="at">values_from =</span> breaks</span>
<span id="cb21-5"><a href="#cb21-5" tabindex="-1"></a>  )</span>
<span id="cb21-6"><a href="#cb21-6" tabindex="-1"></a><span class="co">#&gt; Warning: Values from `breaks` are not uniquely identified; output will contain</span></span>
<span id="cb21-7"><a href="#cb21-7" tabindex="-1"></a><span class="co">#&gt; list-cols.</span></span>
<span id="cb21-8"><a href="#cb21-8" tabindex="-1"></a><span class="co">#&gt; • Use `values_fn = list` to suppress this warning.</span></span>
<span id="cb21-9"><a href="#cb21-9" tabindex="-1"></a><span class="co">#&gt; • Use `values_fn = {summary_fun}` to summarise duplicates.</span></span>
<span id="cb21-10"><a href="#cb21-10" tabindex="-1"></a><span class="co">#&gt; • Use the following dplyr code to identify duplicates.</span></span>
<span id="cb21-11"><a href="#cb21-11" tabindex="-1"></a><span class="co">#&gt;   {data} |&gt;</span></span>
<span id="cb21-12"><a href="#cb21-12" tabindex="-1"></a><span class="co">#&gt;   dplyr::summarise(n = dplyr::n(), .by = c(tension, wool)) |&gt;</span></span>
<span id="cb21-13"><a href="#cb21-13" tabindex="-1"></a><span class="co">#&gt;   dplyr::filter(n &gt; 1L)</span></span>
<span id="cb21-14"><a href="#cb21-14" tabindex="-1"></a><span class="co">#&gt; # A tibble: 3 × 3</span></span>
<span id="cb21-15"><a href="#cb21-15" tabindex="-1"></a><span class="co">#&gt;   tension A         B        </span></span>
<span id="cb21-16"><a href="#cb21-16" tabindex="-1"></a><span class="co">#&gt;   &lt;fct&gt;   &lt;list&gt;    &lt;list&gt;   </span></span>
<span id="cb21-17"><a href="#cb21-17" tabindex="-1"></a><span class="co">#&gt; 1 L       &lt;dbl [9]&gt; &lt;dbl [9]&gt;</span></span>
<span id="cb21-18"><a href="#cb21-18" tabindex="-1"></a><span class="co">#&gt; 2 M       &lt;dbl [9]&gt; &lt;dbl [9]&gt;</span></span>
<span id="cb21-19"><a href="#cb21-19" tabindex="-1"></a><span class="co">#&gt; 3 H       &lt;dbl [9]&gt; &lt;dbl [9]&gt;</span></span></code></pre></div>
<p>We get a warning that each cell in the output corresponds to multiple
cells in the input. The default behaviour produces list-columns, which
contain all the individual values. A more useful output would be summary
statistics, e.g. <code>mean</code> breaks for each combination of wool
and tension:</p>
<div class="sourceCode" id="cb22"><pre class="sourceCode r"><code class="sourceCode r"><span id="cb22-1"><a href="#cb22-1" tabindex="-1"></a>warpbreaks <span class="sc">%&gt;%</span> </span>
<span id="cb22-2"><a href="#cb22-2" tabindex="-1"></a>  <span class="fu">pivot_wider</span>(</span>
<span id="cb22-3"><a href="#cb22-3" tabindex="-1"></a>    <span class="at">names_from =</span> wool, </span>
<span id="cb22-4"><a href="#cb22-4" tabindex="-1"></a>    <span class="at">values_from =</span> breaks,</span>
<span id="cb22-5"><a href="#cb22-5" tabindex="-1"></a>    <span class="at">values_fn =</span> mean</span>
<span id="cb22-6"><a href="#cb22-6" tabindex="-1"></a>  )</span>
<span id="cb22-7"><a href="#cb22-7" tabindex="-1"></a><span class="co">#&gt; # A tibble: 3 × 3</span></span>
<span id="cb22-8"><a href="#cb22-8" tabindex="-1"></a><span class="co">#&gt;   tension     A     B</span></span>
<span id="cb22-9"><a href="#cb22-9" tabindex="-1"></a><span class="co">#&gt;   &lt;fct&gt;   &lt;dbl&gt; &lt;dbl&gt;</span></span>
<span id="cb22-10"><a href="#cb22-10" tabindex="-1"></a><span class="co">#&gt; 1 L        44.6  28.2</span></span>
<span id="cb22-11"><a href="#cb22-11" tabindex="-1"></a><span class="co">#&gt; 2 M        24    28.8</span></span>
<span id="cb22-12"><a href="#cb22-12" tabindex="-1"></a><span class="co">#&gt; 3 H        24.6  18.8</span></span></code></pre></div>
<p>For more complex summary operations, I recommend summarising before
reshaping, but for simple cases it’s often convenient to summarise
within <code>pivot_wider()</code>.</p>
</div>
<div id="generate-column-name-from-multiple-variables" class="section level3">
<h3>Generate column name from multiple variables</h3>
<p>Imagine, as in <a href="https://stackoverflow.com/questions/24929954" class="uri">https://stackoverflow.com/questions/24929954</a>, that we
have information containing the combination of product, country, and
year. In tidy form it might look like this:</p>
<div class="sourceCode" id="cb23"><pre class="sourceCode r"><code class="sourceCode r"><span id="cb23-1"><a href="#cb23-1" tabindex="-1"></a>production <span class="ot">&lt;-</span> </span>
<span id="cb23-2"><a href="#cb23-2" tabindex="-1"></a>  <span class="fu">expand_grid</span>(</span>
<span id="cb23-3"><a href="#cb23-3" tabindex="-1"></a>    <span class="at">product =</span> <span class="fu">c</span>(<span class="st">&quot;A&quot;</span>, <span class="st">&quot;B&quot;</span>), </span>
<span id="cb23-4"><a href="#cb23-4" tabindex="-1"></a>    <span class="at">country =</span> <span class="fu">c</span>(<span class="st">&quot;AI&quot;</span>, <span class="st">&quot;EI&quot;</span>), </span>
<span id="cb23-5"><a href="#cb23-5" tabindex="-1"></a>    <span class="at">year =</span> <span class="dv">2000</span><span class="sc">:</span><span class="dv">2014</span></span>
<span id="cb23-6"><a href="#cb23-6" tabindex="-1"></a>  ) <span class="sc">%&gt;%</span></span>
<span id="cb23-7"><a href="#cb23-7" tabindex="-1"></a>  <span class="fu">filter</span>((product <span class="sc">==</span> <span class="st">&quot;A&quot;</span> <span class="sc">&amp;</span> country <span class="sc">==</span> <span class="st">&quot;AI&quot;</span>) <span class="sc">|</span> product <span class="sc">==</span> <span class="st">&quot;B&quot;</span>) <span class="sc">%&gt;%</span> </span>
<span id="cb23-8"><a href="#cb23-8" tabindex="-1"></a>  <span class="fu">mutate</span>(<span class="at">production =</span> <span class="fu">rnorm</span>(<span class="fu">nrow</span>(.)))</span>
<span id="cb23-9"><a href="#cb23-9" tabindex="-1"></a>production</span>
<span id="cb23-10"><a href="#cb23-10" tabindex="-1"></a><span class="co">#&gt; # A tibble: 45 × 4</span></span>
<span id="cb23-11"><a href="#cb23-11" tabindex="-1"></a><span class="co">#&gt;    product country  year production</span></span>
<span id="cb23-12"><a href="#cb23-12" tabindex="-1"></a><span class="co">#&gt;    &lt;chr&gt;   &lt;chr&gt;   &lt;int&gt;      &lt;dbl&gt;</span></span>
<span id="cb23-13"><a href="#cb23-13" tabindex="-1"></a><span class="co">#&gt;  1 A       AI       2000     0.722 </span></span>
<span id="cb23-14"><a href="#cb23-14" tabindex="-1"></a><span class="co">#&gt;  2 A       AI       2001     2.79  </span></span>
<span id="cb23-15"><a href="#cb23-15" tabindex="-1"></a><span class="co">#&gt;  3 A       AI       2002     0.0848</span></span>
<span id="cb23-16"><a href="#cb23-16" tabindex="-1"></a><span class="co">#&gt;  4 A       AI       2003     0.351 </span></span>
<span id="cb23-17"><a href="#cb23-17" tabindex="-1"></a><span class="co">#&gt;  5 A       AI       2004     1.12  </span></span>
<span id="cb23-18"><a href="#cb23-18" tabindex="-1"></a><span class="co">#&gt;  6 A       AI       2005    -2.26  </span></span>
<span id="cb23-19"><a href="#cb23-19" tabindex="-1"></a><span class="co">#&gt;  7 A       AI       2006     0.566 </span></span>
<span id="cb23-20"><a href="#cb23-20" tabindex="-1"></a><span class="co">#&gt;  8 A       AI       2007    -0.451 </span></span>
<span id="cb23-21"><a href="#cb23-21" tabindex="-1"></a><span class="co">#&gt;  9 A       AI       2008    -0.0190</span></span>
<span id="cb23-22"><a href="#cb23-22" tabindex="-1"></a><span class="co">#&gt; 10 A       AI       2009    -1.69  </span></span>
<span id="cb23-23"><a href="#cb23-23" tabindex="-1"></a><span class="co">#&gt; # ℹ 35 more rows</span></span></code></pre></div>
<p>We want to widen the data so we have one column for each combination
of <code>product</code> and <code>country</code>. The key is to specify
multiple variables for <code>names_from</code>:</p>
<div class="sourceCode" id="cb24"><pre class="sourceCode r"><code class="sourceCode r"><span id="cb24-1"><a href="#cb24-1" tabindex="-1"></a>production <span class="sc">%&gt;%</span> </span>
<span id="cb24-2"><a href="#cb24-2" tabindex="-1"></a>  <span class="fu">pivot_wider</span>(</span>
<span id="cb24-3"><a href="#cb24-3" tabindex="-1"></a>    <span class="at">names_from =</span> <span class="fu">c</span>(product, country), </span>
<span id="cb24-4"><a href="#cb24-4" tabindex="-1"></a>    <span class="at">values_from =</span> production</span>
<span id="cb24-5"><a href="#cb24-5" tabindex="-1"></a>  )</span>
<span id="cb24-6"><a href="#cb24-6" tabindex="-1"></a><span class="co">#&gt; # A tibble: 15 × 4</span></span>
<span id="cb24-7"><a href="#cb24-7" tabindex="-1"></a><span class="co">#&gt;     year    A_AI    B_AI    B_EI</span></span>
<span id="cb24-8"><a href="#cb24-8" tabindex="-1"></a><span class="co">#&gt;    &lt;int&gt;   &lt;dbl&gt;   &lt;dbl&gt;   &lt;dbl&gt;</span></span>
<span id="cb24-9"><a href="#cb24-9" tabindex="-1"></a><span class="co">#&gt;  1  2000  0.722   0.410  -0.270 </span></span>
<span id="cb24-10"><a href="#cb24-10" tabindex="-1"></a><span class="co">#&gt;  2  2001  2.79   -0.402   1.17  </span></span>
<span id="cb24-11"><a href="#cb24-11" tabindex="-1"></a><span class="co">#&gt;  3  2002  0.0848  0.789  -0.399 </span></span>
<span id="cb24-12"><a href="#cb24-12" tabindex="-1"></a><span class="co">#&gt;  4  2003  0.351   0.164  -0.0338</span></span>
<span id="cb24-13"><a href="#cb24-13" tabindex="-1"></a><span class="co">#&gt;  5  2004  1.12    0.344  -1.01  </span></span>
<span id="cb24-14"><a href="#cb24-14" tabindex="-1"></a><span class="co">#&gt;  6  2005 -2.26   -1.70    0.692 </span></span>
<span id="cb24-15"><a href="#cb24-15" tabindex="-1"></a><span class="co">#&gt;  7  2006  0.566  -0.661  -1.05  </span></span>
<span id="cb24-16"><a href="#cb24-16" tabindex="-1"></a><span class="co">#&gt;  8  2007 -0.451   1.38    0.221 </span></span>
<span id="cb24-17"><a href="#cb24-17" tabindex="-1"></a><span class="co">#&gt;  9  2008 -0.0190  0.456  -0.608 </span></span>
<span id="cb24-18"><a href="#cb24-18" tabindex="-1"></a><span class="co">#&gt; 10  2009 -1.69    0.0122  0.771 </span></span>
<span id="cb24-19"><a href="#cb24-19" tabindex="-1"></a><span class="co">#&gt; # ℹ 5 more rows</span></span></code></pre></div>
<p>When either <code>names_from</code> or <code>values_from</code>
select multiple variables, you can control how the column names in the
output constructed with <code>names_sep</code> and
<code>names_prefix</code>, or the workhorse <code>names_glue</code>:</p>
<div class="sourceCode" id="cb25"><pre class="sourceCode r"><code class="sourceCode r"><span id="cb25-1"><a href="#cb25-1" tabindex="-1"></a>production <span class="sc">%&gt;%</span> </span>
<span id="cb25-2"><a href="#cb25-2" tabindex="-1"></a>  <span class="fu">pivot_wider</span>(</span>
<span id="cb25-3"><a href="#cb25-3" tabindex="-1"></a>    <span class="at">names_from =</span> <span class="fu">c</span>(product, country), </span>
<span id="cb25-4"><a href="#cb25-4" tabindex="-1"></a>    <span class="at">values_from =</span> production,</span>
<span id="cb25-5"><a href="#cb25-5" tabindex="-1"></a>    <span class="at">names_sep =</span> <span class="st">&quot;.&quot;</span>,</span>
<span id="cb25-6"><a href="#cb25-6" tabindex="-1"></a>    <span class="at">names_prefix =</span> <span class="st">&quot;prod.&quot;</span></span>
<span id="cb25-7"><a href="#cb25-7" tabindex="-1"></a>  )</span>
<span id="cb25-8"><a href="#cb25-8" tabindex="-1"></a><span class="co">#&gt; # A tibble: 15 × 4</span></span>
<span id="cb25-9"><a href="#cb25-9" tabindex="-1"></a><span class="co">#&gt;     year prod.A.AI prod.B.AI prod.B.EI</span></span>
<span id="cb25-10"><a href="#cb25-10" tabindex="-1"></a><span class="co">#&gt;    &lt;int&gt;     &lt;dbl&gt;     &lt;dbl&gt;     &lt;dbl&gt;</span></span>
<span id="cb25-11"><a href="#cb25-11" tabindex="-1"></a><span class="co">#&gt;  1  2000    0.722     0.410    -0.270 </span></span>
<span id="cb25-12"><a href="#cb25-12" tabindex="-1"></a><span class="co">#&gt;  2  2001    2.79     -0.402     1.17  </span></span>
<span id="cb25-13"><a href="#cb25-13" tabindex="-1"></a><span class="co">#&gt;  3  2002    0.0848    0.789    -0.399 </span></span>
<span id="cb25-14"><a href="#cb25-14" tabindex="-1"></a><span class="co">#&gt;  4  2003    0.351     0.164    -0.0338</span></span>
<span id="cb25-15"><a href="#cb25-15" tabindex="-1"></a><span class="co">#&gt;  5  2004    1.12      0.344    -1.01  </span></span>
<span id="cb25-16"><a href="#cb25-16" tabindex="-1"></a><span class="co">#&gt;  6  2005   -2.26     -1.70      0.692 </span></span>
<span id="cb25-17"><a href="#cb25-17" tabindex="-1"></a><span class="co">#&gt;  7  2006    0.566    -0.661    -1.05  </span></span>
<span id="cb25-18"><a href="#cb25-18" tabindex="-1"></a><span class="co">#&gt;  8  2007   -0.451     1.38      0.221 </span></span>
<span id="cb25-19"><a href="#cb25-19" tabindex="-1"></a><span class="co">#&gt;  9  2008   -0.0190    0.456    -0.608 </span></span>
<span id="cb25-20"><a href="#cb25-20" tabindex="-1"></a><span class="co">#&gt; 10  2009   -1.69      0.0122    0.771 </span></span>
<span id="cb25-21"><a href="#cb25-21" tabindex="-1"></a><span class="co">#&gt; # ℹ 5 more rows</span></span>
<span id="cb25-22"><a href="#cb25-22" tabindex="-1"></a></span>
<span id="cb25-23"><a href="#cb25-23" tabindex="-1"></a>production <span class="sc">%&gt;%</span> </span>
<span id="cb25-24"><a href="#cb25-24" tabindex="-1"></a>  <span class="fu">pivot_wider</span>(</span>
<span id="cb25-25"><a href="#cb25-25" tabindex="-1"></a>    <span class="at">names_from =</span> <span class="fu">c</span>(product, country), </span>
<span id="cb25-26"><a href="#cb25-26" tabindex="-1"></a>    <span class="at">values_from =</span> production,</span>
<span id="cb25-27"><a href="#cb25-27" tabindex="-1"></a>    <span class="at">names_glue =</span> <span class="st">&quot;prod_{product}_{country}&quot;</span></span>
<span id="cb25-28"><a href="#cb25-28" tabindex="-1"></a>  )</span>
<span id="cb25-29"><a href="#cb25-29" tabindex="-1"></a><span class="co">#&gt; # A tibble: 15 × 4</span></span>
<span id="cb25-30"><a href="#cb25-30" tabindex="-1"></a><span class="co">#&gt;     year prod_A_AI prod_B_AI prod_B_EI</span></span>
<span id="cb25-31"><a href="#cb25-31" tabindex="-1"></a><span class="co">#&gt;    &lt;int&gt;     &lt;dbl&gt;     &lt;dbl&gt;     &lt;dbl&gt;</span></span>
<span id="cb25-32"><a href="#cb25-32" tabindex="-1"></a><span class="co">#&gt;  1  2000    0.722     0.410    -0.270 </span></span>
<span id="cb25-33"><a href="#cb25-33" tabindex="-1"></a><span class="co">#&gt;  2  2001    2.79     -0.402     1.17  </span></span>
<span id="cb25-34"><a href="#cb25-34" tabindex="-1"></a><span class="co">#&gt;  3  2002    0.0848    0.789    -0.399 </span></span>
<span id="cb25-35"><a href="#cb25-35" tabindex="-1"></a><span class="co">#&gt;  4  2003    0.351     0.164    -0.0338</span></span>
<span id="cb25-36"><a href="#cb25-36" tabindex="-1"></a><span class="co">#&gt;  5  2004    1.12      0.344    -1.01  </span></span>
<span id="cb25-37"><a href="#cb25-37" tabindex="-1"></a><span class="co">#&gt;  6  2005   -2.26     -1.70      0.692 </span></span>
<span id="cb25-38"><a href="#cb25-38" tabindex="-1"></a><span class="co">#&gt;  7  2006    0.566    -0.661    -1.05  </span></span>
<span id="cb25-39"><a href="#cb25-39" tabindex="-1"></a><span class="co">#&gt;  8  2007   -0.451     1.38      0.221 </span></span>
<span id="cb25-40"><a href="#cb25-40" tabindex="-1"></a><span class="co">#&gt;  9  2008   -0.0190    0.456    -0.608 </span></span>
<span id="cb25-41"><a href="#cb25-41" tabindex="-1"></a><span class="co">#&gt; 10  2009   -1.69      0.0122    0.771 </span></span>
<span id="cb25-42"><a href="#cb25-42" tabindex="-1"></a><span class="co">#&gt; # ℹ 5 more rows</span></span></code></pre></div>
</div>
<div id="tidy-census" class="section level3">
<h3>Tidy census</h3>
<p>The <code>us_rent_income</code> dataset contains information about
median income and rent for each state in the US for 2017 (from the
American Community Survey, retrieved with the <a href="https://walker-data.com/tidycensus/">tidycensus</a> package).</p>
<div class="sourceCode" id="cb26"><pre class="sourceCode r"><code class="sourceCode r"><span id="cb26-1"><a href="#cb26-1" tabindex="-1"></a>us_rent_income</span>
<span id="cb26-2"><a href="#cb26-2" tabindex="-1"></a><span class="co">#&gt; # A tibble: 104 × 5</span></span>
<span id="cb26-3"><a href="#cb26-3" tabindex="-1"></a><span class="co">#&gt;    GEOID NAME       variable estimate   moe</span></span>
<span id="cb26-4"><a href="#cb26-4" tabindex="-1"></a><span class="co">#&gt;    &lt;chr&gt; &lt;chr&gt;      &lt;chr&gt;       &lt;dbl&gt; &lt;dbl&gt;</span></span>
<span id="cb26-5"><a href="#cb26-5" tabindex="-1"></a><span class="co">#&gt;  1 01    Alabama    income      24476   136</span></span>
<span id="cb26-6"><a href="#cb26-6" tabindex="-1"></a><span class="co">#&gt;  2 01    Alabama    rent          747     3</span></span>
<span id="cb26-7"><a href="#cb26-7" tabindex="-1"></a><span class="co">#&gt;  3 02    Alaska     income      32940   508</span></span>
<span id="cb26-8"><a href="#cb26-8" tabindex="-1"></a><span class="co">#&gt;  4 02    Alaska     rent         1200    13</span></span>
<span id="cb26-9"><a href="#cb26-9" tabindex="-1"></a><span class="co">#&gt;  5 04    Arizona    income      27517   148</span></span>
<span id="cb26-10"><a href="#cb26-10" tabindex="-1"></a><span class="co">#&gt;  6 04    Arizona    rent          972     4</span></span>
<span id="cb26-11"><a href="#cb26-11" tabindex="-1"></a><span class="co">#&gt;  7 05    Arkansas   income      23789   165</span></span>
<span id="cb26-12"><a href="#cb26-12" tabindex="-1"></a><span class="co">#&gt;  8 05    Arkansas   rent          709     5</span></span>
<span id="cb26-13"><a href="#cb26-13" tabindex="-1"></a><span class="co">#&gt;  9 06    California income      29454   109</span></span>
<span id="cb26-14"><a href="#cb26-14" tabindex="-1"></a><span class="co">#&gt; 10 06    California rent         1358     3</span></span>
<span id="cb26-15"><a href="#cb26-15" tabindex="-1"></a><span class="co">#&gt; # ℹ 94 more rows</span></span></code></pre></div>
<p>Here both <code>estimate</code> and <code>moe</code> are values
columns, so we can supply them to <code>values_from</code>:</p>
<div class="sourceCode" id="cb27"><pre class="sourceCode r"><code class="sourceCode r"><span id="cb27-1"><a href="#cb27-1" tabindex="-1"></a>us_rent_income <span class="sc">%&gt;%</span> </span>
<span id="cb27-2"><a href="#cb27-2" tabindex="-1"></a>  <span class="fu">pivot_wider</span>(</span>
<span id="cb27-3"><a href="#cb27-3" tabindex="-1"></a>    <span class="at">names_from =</span> variable, </span>
<span id="cb27-4"><a href="#cb27-4" tabindex="-1"></a>    <span class="at">values_from =</span> <span class="fu">c</span>(estimate, moe)</span>
<span id="cb27-5"><a href="#cb27-5" tabindex="-1"></a>  )</span>
<span id="cb27-6"><a href="#cb27-6" tabindex="-1"></a><span class="co">#&gt; # A tibble: 52 × 6</span></span>
<span id="cb27-7"><a href="#cb27-7" tabindex="-1"></a><span class="co">#&gt;    GEOID NAME                 estimate_income estimate_rent moe_income moe_rent</span></span>
<span id="cb27-8"><a href="#cb27-8" tabindex="-1"></a><span class="co">#&gt;    &lt;chr&gt; &lt;chr&gt;                          &lt;dbl&gt;         &lt;dbl&gt;      &lt;dbl&gt;    &lt;dbl&gt;</span></span>
<span id="cb27-9"><a href="#cb27-9" tabindex="-1"></a><span class="co">#&gt;  1 01    Alabama                        24476           747        136        3</span></span>
<span id="cb27-10"><a href="#cb27-10" tabindex="-1"></a><span class="co">#&gt;  2 02    Alaska                         32940          1200        508       13</span></span>
<span id="cb27-11"><a href="#cb27-11" tabindex="-1"></a><span class="co">#&gt;  3 04    Arizona                        27517           972        148        4</span></span>
<span id="cb27-12"><a href="#cb27-12" tabindex="-1"></a><span class="co">#&gt;  4 05    Arkansas                       23789           709        165        5</span></span>
<span id="cb27-13"><a href="#cb27-13" tabindex="-1"></a><span class="co">#&gt;  5 06    California                     29454          1358        109        3</span></span>
<span id="cb27-14"><a href="#cb27-14" tabindex="-1"></a><span class="co">#&gt;  6 08    Colorado                       32401          1125        109        5</span></span>
<span id="cb27-15"><a href="#cb27-15" tabindex="-1"></a><span class="co">#&gt;  7 09    Connecticut                    35326          1123        195        5</span></span>
<span id="cb27-16"><a href="#cb27-16" tabindex="-1"></a><span class="co">#&gt;  8 10    Delaware                       31560          1076        247       10</span></span>
<span id="cb27-17"><a href="#cb27-17" tabindex="-1"></a><span class="co">#&gt;  9 11    District of Columbia           43198          1424        681       17</span></span>
<span id="cb27-18"><a href="#cb27-18" tabindex="-1"></a><span class="co">#&gt; 10 12    Florida                        25952          1077         70        3</span></span>
<span id="cb27-19"><a href="#cb27-19" tabindex="-1"></a><span class="co">#&gt; # ℹ 42 more rows</span></span></code></pre></div>
<p>Note that the name of the variable is automatically appended to the
output columns.</p>
</div>
<div id="implicit-missing-values" class="section level3">
<h3>Implicit missing values</h3>
<p>Occasionally, you’ll come across data where your names variable is
encoded as a factor, but not all of the data will be represented.</p>
<div class="sourceCode" id="cb28"><pre class="sourceCode r"><code class="sourceCode r"><span id="cb28-1"><a href="#cb28-1" tabindex="-1"></a>weekdays <span class="ot">&lt;-</span> <span class="fu">c</span>(<span class="st">&quot;Mon&quot;</span>, <span class="st">&quot;Tue&quot;</span>, <span class="st">&quot;Wed&quot;</span>, <span class="st">&quot;Thu&quot;</span>, <span class="st">&quot;Fri&quot;</span>, <span class="st">&quot;Sat&quot;</span>, <span class="st">&quot;Sun&quot;</span>)</span>
<span id="cb28-2"><a href="#cb28-2" tabindex="-1"></a></span>
<span id="cb28-3"><a href="#cb28-3" tabindex="-1"></a>daily <span class="ot">&lt;-</span> <span class="fu">tibble</span>(</span>
<span id="cb28-4"><a href="#cb28-4" tabindex="-1"></a>  <span class="at">day =</span> <span class="fu">factor</span>(<span class="fu">c</span>(<span class="st">&quot;Tue&quot;</span>, <span class="st">&quot;Thu&quot;</span>, <span class="st">&quot;Fri&quot;</span>, <span class="st">&quot;Mon&quot;</span>), <span class="at">levels =</span> weekdays),</span>
<span id="cb28-5"><a href="#cb28-5" tabindex="-1"></a>  <span class="at">value =</span> <span class="fu">c</span>(<span class="dv">2</span>, <span class="dv">3</span>, <span class="dv">1</span>, <span class="dv">5</span>)</span>
<span id="cb28-6"><a href="#cb28-6" tabindex="-1"></a>)</span>
<span id="cb28-7"><a href="#cb28-7" tabindex="-1"></a></span>
<span id="cb28-8"><a href="#cb28-8" tabindex="-1"></a>daily</span>
<span id="cb28-9"><a href="#cb28-9" tabindex="-1"></a><span class="co">#&gt; # A tibble: 4 × 2</span></span>
<span id="cb28-10"><a href="#cb28-10" tabindex="-1"></a><span class="co">#&gt;   day   value</span></span>
<span id="cb28-11"><a href="#cb28-11" tabindex="-1"></a><span class="co">#&gt;   &lt;fct&gt; &lt;dbl&gt;</span></span>
<span id="cb28-12"><a href="#cb28-12" tabindex="-1"></a><span class="co">#&gt; 1 Tue       2</span></span>
<span id="cb28-13"><a href="#cb28-13" tabindex="-1"></a><span class="co">#&gt; 2 Thu       3</span></span>
<span id="cb28-14"><a href="#cb28-14" tabindex="-1"></a><span class="co">#&gt; 3 Fri       1</span></span>
<span id="cb28-15"><a href="#cb28-15" tabindex="-1"></a><span class="co">#&gt; 4 Mon       5</span></span></code></pre></div>
<p><code>pivot_wider()</code> defaults to generating columns from the
values that are actually represented in the data, but you might want to
include a column for each possible level in case the data changes in the
future.</p>
<div class="sourceCode" id="cb29"><pre class="sourceCode r"><code class="sourceCode r"><span id="cb29-1"><a href="#cb29-1" tabindex="-1"></a>daily <span class="sc">%&gt;%</span></span>
<span id="cb29-2"><a href="#cb29-2" tabindex="-1"></a>  <span class="fu">pivot_wider</span>(</span>
<span id="cb29-3"><a href="#cb29-3" tabindex="-1"></a>    <span class="at">names_from =</span> day, </span>
<span id="cb29-4"><a href="#cb29-4" tabindex="-1"></a>    <span class="at">values_from =</span> value</span>
<span id="cb29-5"><a href="#cb29-5" tabindex="-1"></a>  )</span>
<span id="cb29-6"><a href="#cb29-6" tabindex="-1"></a><span class="co">#&gt; # A tibble: 1 × 4</span></span>
<span id="cb29-7"><a href="#cb29-7" tabindex="-1"></a><span class="co">#&gt;     Tue   Thu   Fri   Mon</span></span>
<span id="cb29-8"><a href="#cb29-8" tabindex="-1"></a><span class="co">#&gt;   &lt;dbl&gt; &lt;dbl&gt; &lt;dbl&gt; &lt;dbl&gt;</span></span>
<span id="cb29-9"><a href="#cb29-9" tabindex="-1"></a><span class="co">#&gt; 1     2     3     1     5</span></span></code></pre></div>
<p>The <code>names_expand</code> argument will turn implicit factor
levels into explicit ones, forcing them to be represented in the result.
It also sorts the column names using the level order, which produces
more intuitive results in this case.</p>
<div class="sourceCode" id="cb30"><pre class="sourceCode r"><code class="sourceCode r"><span id="cb30-1"><a href="#cb30-1" tabindex="-1"></a>daily <span class="sc">%&gt;%</span> </span>
<span id="cb30-2"><a href="#cb30-2" tabindex="-1"></a>  <span class="fu">pivot_wider</span>(</span>
<span id="cb30-3"><a href="#cb30-3" tabindex="-1"></a>    <span class="at">names_from =</span> day, </span>
<span id="cb30-4"><a href="#cb30-4" tabindex="-1"></a>    <span class="at">values_from =</span> value, </span>
<span id="cb30-5"><a href="#cb30-5" tabindex="-1"></a>    <span class="at">names_expand =</span> <span class="cn">TRUE</span></span>
<span id="cb30-6"><a href="#cb30-6" tabindex="-1"></a>  )</span>
<span id="cb30-7"><a href="#cb30-7" tabindex="-1"></a><span class="co">#&gt; # A tibble: 1 × 7</span></span>
<span id="cb30-8"><a href="#cb30-8" tabindex="-1"></a><span class="co">#&gt;     Mon   Tue   Wed   Thu   Fri   Sat   Sun</span></span>
<span id="cb30-9"><a href="#cb30-9" tabindex="-1"></a><span class="co">#&gt;   &lt;dbl&gt; &lt;dbl&gt; &lt;dbl&gt; &lt;dbl&gt; &lt;dbl&gt; &lt;dbl&gt; &lt;dbl&gt;</span></span>
<span id="cb30-10"><a href="#cb30-10" tabindex="-1"></a><span class="co">#&gt; 1     5     2    NA     3     1    NA    NA</span></span></code></pre></div>
<p>If multiple <code>names_from</code> columns are provided,
<code>names_expand</code> will generate a Cartesian product of all
possible combinations of the <code>names_from</code> values. Notice that
the following data has omitted some rows where the percentage value
would be <code>0</code>. <code>names_expand</code> allows us to make
those explicit during the pivot.</p>
<div class="sourceCode" id="cb31"><pre class="sourceCode r"><code class="sourceCode r"><span id="cb31-1"><a href="#cb31-1" tabindex="-1"></a>percentages <span class="ot">&lt;-</span> <span class="fu">tibble</span>(</span>
<span id="cb31-2"><a href="#cb31-2" tabindex="-1"></a>  <span class="at">year =</span> <span class="fu">c</span>(<span class="dv">2018</span>, <span class="dv">2019</span>, <span class="dv">2020</span>, <span class="dv">2020</span>),</span>
<span id="cb31-3"><a href="#cb31-3" tabindex="-1"></a>  <span class="at">type =</span> <span class="fu">factor</span>(<span class="fu">c</span>(<span class="st">&quot;A&quot;</span>, <span class="st">&quot;B&quot;</span>, <span class="st">&quot;A&quot;</span>, <span class="st">&quot;B&quot;</span>), <span class="at">levels =</span> <span class="fu">c</span>(<span class="st">&quot;A&quot;</span>, <span class="st">&quot;B&quot;</span>)),</span>
<span id="cb31-4"><a href="#cb31-4" tabindex="-1"></a>  <span class="at">percentage =</span> <span class="fu">c</span>(<span class="dv">100</span>, <span class="dv">100</span>, <span class="dv">40</span>, <span class="dv">60</span>)</span>
<span id="cb31-5"><a href="#cb31-5" tabindex="-1"></a>)</span>
<span id="cb31-6"><a href="#cb31-6" tabindex="-1"></a></span>
<span id="cb31-7"><a href="#cb31-7" tabindex="-1"></a>percentages</span>
<span id="cb31-8"><a href="#cb31-8" tabindex="-1"></a><span class="co">#&gt; # A tibble: 4 × 3</span></span>
<span id="cb31-9"><a href="#cb31-9" tabindex="-1"></a><span class="co">#&gt;    year type  percentage</span></span>
<span id="cb31-10"><a href="#cb31-10" tabindex="-1"></a><span class="co">#&gt;   &lt;dbl&gt; &lt;fct&gt;      &lt;dbl&gt;</span></span>
<span id="cb31-11"><a href="#cb31-11" tabindex="-1"></a><span class="co">#&gt; 1  2018 A            100</span></span>
<span id="cb31-12"><a href="#cb31-12" tabindex="-1"></a><span class="co">#&gt; 2  2019 B            100</span></span>
<span id="cb31-13"><a href="#cb31-13" tabindex="-1"></a><span class="co">#&gt; 3  2020 A             40</span></span>
<span id="cb31-14"><a href="#cb31-14" tabindex="-1"></a><span class="co">#&gt; 4  2020 B             60</span></span>
<span id="cb31-15"><a href="#cb31-15" tabindex="-1"></a></span>
<span id="cb31-16"><a href="#cb31-16" tabindex="-1"></a>percentages <span class="sc">%&gt;%</span> </span>
<span id="cb31-17"><a href="#cb31-17" tabindex="-1"></a>  <span class="fu">pivot_wider</span>(</span>
<span id="cb31-18"><a href="#cb31-18" tabindex="-1"></a>    <span class="at">names_from =</span> <span class="fu">c</span>(year, type),</span>
<span id="cb31-19"><a href="#cb31-19" tabindex="-1"></a>    <span class="at">values_from =</span> percentage,</span>
<span id="cb31-20"><a href="#cb31-20" tabindex="-1"></a>    <span class="at">names_expand =</span> <span class="cn">TRUE</span>,</span>
<span id="cb31-21"><a href="#cb31-21" tabindex="-1"></a>    <span class="at">values_fill =</span> <span class="dv">0</span></span>
<span id="cb31-22"><a href="#cb31-22" tabindex="-1"></a>  )</span>
<span id="cb31-23"><a href="#cb31-23" tabindex="-1"></a><span class="co">#&gt; # A tibble: 1 × 6</span></span>
<span id="cb31-24"><a href="#cb31-24" tabindex="-1"></a><span class="co">#&gt;   `2018_A` `2018_B` `2019_A` `2019_B` `2020_A` `2020_B`</span></span>
<span id="cb31-25"><a href="#cb31-25" tabindex="-1"></a><span class="co">#&gt;      &lt;dbl&gt;    &lt;dbl&gt;    &lt;dbl&gt;    &lt;dbl&gt;    &lt;dbl&gt;    &lt;dbl&gt;</span></span>
<span id="cb31-26"><a href="#cb31-26" tabindex="-1"></a><span class="co">#&gt; 1      100        0        0      100       40       60</span></span></code></pre></div>
<p>A related problem can occur when there are implicit missing factor
levels or combinations in the <code>id_cols</code>. In this case, there
are missing rows (rather than columns) that you’d like to explicitly
represent. For this example, we’ll modify our <code>daily</code> data
with a <code>type</code> column, and pivot on that instead, keeping
<code>day</code> as an id column.</p>
<div class="sourceCode" id="cb32"><pre class="sourceCode r"><code class="sourceCode r"><span id="cb32-1"><a href="#cb32-1" tabindex="-1"></a>daily <span class="ot">&lt;-</span> <span class="fu">mutate</span>(daily, <span class="at">type =</span> <span class="fu">factor</span>(<span class="fu">c</span>(<span class="st">&quot;A&quot;</span>, <span class="st">&quot;B&quot;</span>, <span class="st">&quot;B&quot;</span>, <span class="st">&quot;A&quot;</span>)))</span>
<span id="cb32-2"><a href="#cb32-2" tabindex="-1"></a>daily</span>
<span id="cb32-3"><a href="#cb32-3" tabindex="-1"></a><span class="co">#&gt; # A tibble: 4 × 3</span></span>
<span id="cb32-4"><a href="#cb32-4" tabindex="-1"></a><span class="co">#&gt;   day   value type </span></span>
<span id="cb32-5"><a href="#cb32-5" tabindex="-1"></a><span class="co">#&gt;   &lt;fct&gt; &lt;dbl&gt; &lt;fct&gt;</span></span>
<span id="cb32-6"><a href="#cb32-6" tabindex="-1"></a><span class="co">#&gt; 1 Tue       2 A    </span></span>
<span id="cb32-7"><a href="#cb32-7" tabindex="-1"></a><span class="co">#&gt; 2 Thu       3 B    </span></span>
<span id="cb32-8"><a href="#cb32-8" tabindex="-1"></a><span class="co">#&gt; 3 Fri       1 B    </span></span>
<span id="cb32-9"><a href="#cb32-9" tabindex="-1"></a><span class="co">#&gt; 4 Mon       5 A</span></span></code></pre></div>
<p>All of our <code>type</code> levels are represented in the columns,
but we are missing some rows related to the unrepresented
<code>day</code> factor levels.</p>
<div class="sourceCode" id="cb33"><pre class="sourceCode r"><code class="sourceCode r"><span id="cb33-1"><a href="#cb33-1" tabindex="-1"></a>daily <span class="sc">%&gt;%</span></span>
<span id="cb33-2"><a href="#cb33-2" tabindex="-1"></a>  <span class="fu">pivot_wider</span>(</span>
<span id="cb33-3"><a href="#cb33-3" tabindex="-1"></a>    <span class="at">names_from =</span> type, </span>
<span id="cb33-4"><a href="#cb33-4" tabindex="-1"></a>    <span class="at">values_from =</span> value,</span>
<span id="cb33-5"><a href="#cb33-5" tabindex="-1"></a>    <span class="at">values_fill =</span> <span class="dv">0</span></span>
<span id="cb33-6"><a href="#cb33-6" tabindex="-1"></a>  )</span>
<span id="cb33-7"><a href="#cb33-7" tabindex="-1"></a><span class="co">#&gt; # A tibble: 4 × 3</span></span>
<span id="cb33-8"><a href="#cb33-8" tabindex="-1"></a><span class="co">#&gt;   day       A     B</span></span>
<span id="cb33-9"><a href="#cb33-9" tabindex="-1"></a><span class="co">#&gt;   &lt;fct&gt; &lt;dbl&gt; &lt;dbl&gt;</span></span>
<span id="cb33-10"><a href="#cb33-10" tabindex="-1"></a><span class="co">#&gt; 1 Tue       2     0</span></span>
<span id="cb33-11"><a href="#cb33-11" tabindex="-1"></a><span class="co">#&gt; 2 Thu       0     3</span></span>
<span id="cb33-12"><a href="#cb33-12" tabindex="-1"></a><span class="co">#&gt; 3 Fri       0     1</span></span>
<span id="cb33-13"><a href="#cb33-13" tabindex="-1"></a><span class="co">#&gt; 4 Mon       5     0</span></span></code></pre></div>
<p>We can use <code>id_expand</code> in the same way that we used
<code>names_expand</code>, which will expand out (and sort) the implicit
missing rows in the <code>id_cols</code>.</p>
<div class="sourceCode" id="cb34"><pre class="sourceCode r"><code class="sourceCode r"><span id="cb34-1"><a href="#cb34-1" tabindex="-1"></a>daily <span class="sc">%&gt;%</span> </span>
<span id="cb34-2"><a href="#cb34-2" tabindex="-1"></a>  <span class="fu">pivot_wider</span>(</span>
<span id="cb34-3"><a href="#cb34-3" tabindex="-1"></a>    <span class="at">names_from =</span> type, </span>
<span id="cb34-4"><a href="#cb34-4" tabindex="-1"></a>    <span class="at">values_from =</span> value,</span>
<span id="cb34-5"><a href="#cb34-5" tabindex="-1"></a>    <span class="at">values_fill =</span> <span class="dv">0</span>,</span>
<span id="cb34-6"><a href="#cb34-6" tabindex="-1"></a>    <span class="at">id_expand =</span> <span class="cn">TRUE</span></span>
<span id="cb34-7"><a href="#cb34-7" tabindex="-1"></a>  )</span>
<span id="cb34-8"><a href="#cb34-8" tabindex="-1"></a><span class="co">#&gt; # A tibble: 7 × 3</span></span>
<span id="cb34-9"><a href="#cb34-9" tabindex="-1"></a><span class="co">#&gt;   day       A     B</span></span>
<span id="cb34-10"><a href="#cb34-10" tabindex="-1"></a><span class="co">#&gt;   &lt;fct&gt; &lt;dbl&gt; &lt;dbl&gt;</span></span>
<span id="cb34-11"><a href="#cb34-11" tabindex="-1"></a><span class="co">#&gt; 1 Mon       5     0</span></span>
<span id="cb34-12"><a href="#cb34-12" tabindex="-1"></a><span class="co">#&gt; 2 Tue       2     0</span></span>
<span id="cb34-13"><a href="#cb34-13" tabindex="-1"></a><span class="co">#&gt; 3 Wed       0     0</span></span>
<span id="cb34-14"><a href="#cb34-14" tabindex="-1"></a><span class="co">#&gt; 4 Thu       0     3</span></span>
<span id="cb34-15"><a href="#cb34-15" tabindex="-1"></a><span class="co">#&gt; 5 Fri       0     1</span></span>
<span id="cb34-16"><a href="#cb34-16" tabindex="-1"></a><span class="co">#&gt; 6 Sat       0     0</span></span>
<span id="cb34-17"><a href="#cb34-17" tabindex="-1"></a><span class="co">#&gt; 7 Sun       0     0</span></span></code></pre></div>
</div>
<div id="unused-columns" class="section level3">
<h3>Unused columns</h3>
<p>Imagine you’ve found yourself in a situation where you have columns
in your data that are completely unrelated to the pivoting process, but
you’d still like to retain their information somehow. For example, in
<code>updates</code> we’d like to pivot on the <code>system</code>
column to create one row summaries of each county’s system updates.</p>
<div class="sourceCode" id="cb35"><pre class="sourceCode r"><code class="sourceCode r"><span id="cb35-1"><a href="#cb35-1" tabindex="-1"></a>updates <span class="ot">&lt;-</span> <span class="fu">tibble</span>(</span>
<span id="cb35-2"><a href="#cb35-2" tabindex="-1"></a>  <span class="at">county =</span> <span class="fu">c</span>(<span class="st">&quot;Wake&quot;</span>, <span class="st">&quot;Wake&quot;</span>, <span class="st">&quot;Wake&quot;</span>, <span class="st">&quot;Guilford&quot;</span>, <span class="st">&quot;Guilford&quot;</span>),</span>
<span id="cb35-3"><a href="#cb35-3" tabindex="-1"></a>  <span class="at">date =</span> <span class="fu">c</span>(<span class="fu">as.Date</span>(<span class="st">&quot;2020-01-01&quot;</span>) <span class="sc">+</span> <span class="dv">0</span><span class="sc">:</span><span class="dv">2</span>, <span class="fu">as.Date</span>(<span class="st">&quot;2020-01-03&quot;</span>) <span class="sc">+</span> <span class="dv">0</span><span class="sc">:</span><span class="dv">1</span>),</span>
<span id="cb35-4"><a href="#cb35-4" tabindex="-1"></a>  <span class="at">system =</span> <span class="fu">c</span>(<span class="st">&quot;A&quot;</span>, <span class="st">&quot;B&quot;</span>, <span class="st">&quot;C&quot;</span>, <span class="st">&quot;A&quot;</span>, <span class="st">&quot;C&quot;</span>),</span>
<span id="cb35-5"><a href="#cb35-5" tabindex="-1"></a>  <span class="at">value =</span> <span class="fu">c</span>(<span class="fl">3.2</span>, <span class="dv">4</span>, <span class="fl">5.5</span>, <span class="dv">2</span>, <span class="fl">1.2</span>)</span>
<span id="cb35-6"><a href="#cb35-6" tabindex="-1"></a>)</span>
<span id="cb35-7"><a href="#cb35-7" tabindex="-1"></a></span>
<span id="cb35-8"><a href="#cb35-8" tabindex="-1"></a>updates</span>
<span id="cb35-9"><a href="#cb35-9" tabindex="-1"></a><span class="co">#&gt; # A tibble: 5 × 4</span></span>
<span id="cb35-10"><a href="#cb35-10" tabindex="-1"></a><span class="co">#&gt;   county   date       system value</span></span>
<span id="cb35-11"><a href="#cb35-11" tabindex="-1"></a><span class="co">#&gt;   &lt;chr&gt;    &lt;date&gt;     &lt;chr&gt;  &lt;dbl&gt;</span></span>
<span id="cb35-12"><a href="#cb35-12" tabindex="-1"></a><span class="co">#&gt; 1 Wake     2020-01-01 A        3.2</span></span>
<span id="cb35-13"><a href="#cb35-13" tabindex="-1"></a><span class="co">#&gt; 2 Wake     2020-01-02 B        4  </span></span>
<span id="cb35-14"><a href="#cb35-14" tabindex="-1"></a><span class="co">#&gt; 3 Wake     2020-01-03 C        5.5</span></span>
<span id="cb35-15"><a href="#cb35-15" tabindex="-1"></a><span class="co">#&gt; 4 Guilford 2020-01-03 A        2  </span></span>
<span id="cb35-16"><a href="#cb35-16" tabindex="-1"></a><span class="co">#&gt; 5 Guilford 2020-01-04 C        1.2</span></span></code></pre></div>
<p>We could do that with a typical <code>pivot_wider()</code> call, but
we completely lose all information about the <code>date</code>
column.</p>
<div class="sourceCode" id="cb36"><pre class="sourceCode r"><code class="sourceCode r"><span id="cb36-1"><a href="#cb36-1" tabindex="-1"></a>updates <span class="sc">%&gt;%</span> </span>
<span id="cb36-2"><a href="#cb36-2" tabindex="-1"></a>  <span class="fu">pivot_wider</span>(</span>
<span id="cb36-3"><a href="#cb36-3" tabindex="-1"></a>    <span class="at">id_cols =</span> county, </span>
<span id="cb36-4"><a href="#cb36-4" tabindex="-1"></a>    <span class="at">names_from =</span> system, </span>
<span id="cb36-5"><a href="#cb36-5" tabindex="-1"></a>    <span class="at">values_from =</span> value</span>
<span id="cb36-6"><a href="#cb36-6" tabindex="-1"></a>  )</span>
<span id="cb36-7"><a href="#cb36-7" tabindex="-1"></a><span class="co">#&gt; # A tibble: 2 × 4</span></span>
<span id="cb36-8"><a href="#cb36-8" tabindex="-1"></a><span class="co">#&gt;   county       A     B     C</span></span>
<span id="cb36-9"><a href="#cb36-9" tabindex="-1"></a><span class="co">#&gt;   &lt;chr&gt;    &lt;dbl&gt; &lt;dbl&gt; &lt;dbl&gt;</span></span>
<span id="cb36-10"><a href="#cb36-10" tabindex="-1"></a><span class="co">#&gt; 1 Wake       3.2     4   5.5</span></span>
<span id="cb36-11"><a href="#cb36-11" tabindex="-1"></a><span class="co">#&gt; 2 Guilford   2      NA   1.2</span></span></code></pre></div>
<p>For this example, we’d like to retain the most recent update date
across all systems in a particular county. To accomplish that we can use
the <code>unused_fn</code> argument, which allows us to summarize values
from the columns not utilized in the pivoting process.</p>
<div class="sourceCode" id="cb37"><pre class="sourceCode r"><code class="sourceCode r"><span id="cb37-1"><a href="#cb37-1" tabindex="-1"></a>updates <span class="sc">%&gt;%</span> </span>
<span id="cb37-2"><a href="#cb37-2" tabindex="-1"></a>  <span class="fu">pivot_wider</span>(</span>
<span id="cb37-3"><a href="#cb37-3" tabindex="-1"></a>    <span class="at">id_cols =</span> county, </span>
<span id="cb37-4"><a href="#cb37-4" tabindex="-1"></a>    <span class="at">names_from =</span> system, </span>
<span id="cb37-5"><a href="#cb37-5" tabindex="-1"></a>    <span class="at">values_from =</span> value,</span>
<span id="cb37-6"><a href="#cb37-6" tabindex="-1"></a>    <span class="at">unused_fn =</span> <span class="fu">list</span>(<span class="at">date =</span> max)</span>
<span id="cb37-7"><a href="#cb37-7" tabindex="-1"></a>  )</span>
<span id="cb37-8"><a href="#cb37-8" tabindex="-1"></a><span class="co">#&gt; # A tibble: 2 × 5</span></span>
<span id="cb37-9"><a href="#cb37-9" tabindex="-1"></a><span class="co">#&gt;   county       A     B     C date      </span></span>
<span id="cb37-10"><a href="#cb37-10" tabindex="-1"></a><span class="co">#&gt;   &lt;chr&gt;    &lt;dbl&gt; &lt;dbl&gt; &lt;dbl&gt; &lt;date&gt;    </span></span>
<span id="cb37-11"><a href="#cb37-11" tabindex="-1"></a><span class="co">#&gt; 1 Wake       3.2     4   5.5 2020-01-03</span></span>
<span id="cb37-12"><a href="#cb37-12" tabindex="-1"></a><span class="co">#&gt; 2 Guilford   2      NA   1.2 2020-01-04</span></span></code></pre></div>
<p>You can also retain the data but delay the aggregation entirely by
using <code>list()</code> as the summary function.</p>
<div class="sourceCode" id="cb38"><pre class="sourceCode r"><code class="sourceCode r"><span id="cb38-1"><a href="#cb38-1" tabindex="-1"></a>updates <span class="sc">%&gt;%</span> </span>
<span id="cb38-2"><a href="#cb38-2" tabindex="-1"></a>  <span class="fu">pivot_wider</span>(</span>
<span id="cb38-3"><a href="#cb38-3" tabindex="-1"></a>    <span class="at">id_cols =</span> county, </span>
<span id="cb38-4"><a href="#cb38-4" tabindex="-1"></a>    <span class="at">names_from =</span> system, </span>
<span id="cb38-5"><a href="#cb38-5" tabindex="-1"></a>    <span class="at">values_from =</span> value,</span>
<span id="cb38-6"><a href="#cb38-6" tabindex="-1"></a>    <span class="at">unused_fn =</span> <span class="fu">list</span>(<span class="at">date =</span> list)</span>
<span id="cb38-7"><a href="#cb38-7" tabindex="-1"></a>  )</span>
<span id="cb38-8"><a href="#cb38-8" tabindex="-1"></a><span class="co">#&gt; # A tibble: 2 × 5</span></span>
<span id="cb38-9"><a href="#cb38-9" tabindex="-1"></a><span class="co">#&gt;   county       A     B     C date      </span></span>
<span id="cb38-10"><a href="#cb38-10" tabindex="-1"></a><span class="co">#&gt;   &lt;chr&gt;    &lt;dbl&gt; &lt;dbl&gt; &lt;dbl&gt; &lt;list&gt;    </span></span>
<span id="cb38-11"><a href="#cb38-11" tabindex="-1"></a><span class="co">#&gt; 1 Wake       3.2     4   5.5 &lt;date [3]&gt;</span></span>
<span id="cb38-12"><a href="#cb38-12" tabindex="-1"></a><span class="co">#&gt; 2 Guilford   2      NA   1.2 &lt;date [2]&gt;</span></span></code></pre></div>
</div>
<div id="contact-list" class="section level3">
<h3>Contact list</h3>
<p>A final challenge is inspired by <a href="https://github.com/jienagu/tidyverse_examples/blob/master/example_long_wide.R">Jiena
Gu</a>. Imagine you have a contact list that you’ve copied and pasted
from a website:</p>
<div class="sourceCode" id="cb39"><pre class="sourceCode r"><code class="sourceCode r"><span id="cb39-1"><a href="#cb39-1" tabindex="-1"></a>contacts <span class="ot">&lt;-</span> <span class="fu">tribble</span>(</span>
<span id="cb39-2"><a href="#cb39-2" tabindex="-1"></a>  <span class="sc">~</span>field, <span class="sc">~</span>value,</span>
<span id="cb39-3"><a href="#cb39-3" tabindex="-1"></a>  <span class="st">&quot;name&quot;</span>, <span class="st">&quot;Jiena McLellan&quot;</span>,</span>
<span id="cb39-4"><a href="#cb39-4" tabindex="-1"></a>  <span class="st">&quot;company&quot;</span>, <span class="st">&quot;Toyota&quot;</span>, </span>
<span id="cb39-5"><a href="#cb39-5" tabindex="-1"></a>  <span class="st">&quot;name&quot;</span>, <span class="st">&quot;John Smith&quot;</span>, </span>
<span id="cb39-6"><a href="#cb39-6" tabindex="-1"></a>  <span class="st">&quot;company&quot;</span>, <span class="st">&quot;google&quot;</span>, </span>
<span id="cb39-7"><a href="#cb39-7" tabindex="-1"></a>  <span class="st">&quot;email&quot;</span>, <span class="st">&quot;john@google.com&quot;</span>,</span>
<span id="cb39-8"><a href="#cb39-8" tabindex="-1"></a>  <span class="st">&quot;name&quot;</span>, <span class="st">&quot;Huxley Ratcliffe&quot;</span></span>
<span id="cb39-9"><a href="#cb39-9" tabindex="-1"></a>)</span></code></pre></div>
<p>This is challenging because there’s no variable that identifies which
observations belong together. We can fix this by noting that every
contact starts with a name, so we can create a unique id by counting
every time we see “name” as the <code>field</code>:</p>
<div class="sourceCode" id="cb40"><pre class="sourceCode r"><code class="sourceCode r"><span id="cb40-1"><a href="#cb40-1" tabindex="-1"></a>contacts <span class="ot">&lt;-</span> contacts <span class="sc">%&gt;%</span> </span>
<span id="cb40-2"><a href="#cb40-2" tabindex="-1"></a>  <span class="fu">mutate</span>(</span>
<span id="cb40-3"><a href="#cb40-3" tabindex="-1"></a>    <span class="at">person_id =</span> <span class="fu">cumsum</span>(field <span class="sc">==</span> <span class="st">&quot;name&quot;</span>)</span>
<span id="cb40-4"><a href="#cb40-4" tabindex="-1"></a>  )</span>
<span id="cb40-5"><a href="#cb40-5" tabindex="-1"></a>contacts</span>
<span id="cb40-6"><a href="#cb40-6" tabindex="-1"></a><span class="co">#&gt; # A tibble: 6 × 3</span></span>
<span id="cb40-7"><a href="#cb40-7" tabindex="-1"></a><span class="co">#&gt;   field   value            person_id</span></span>
<span id="cb40-8"><a href="#cb40-8" tabindex="-1"></a><span class="co">#&gt;   &lt;chr&gt;   &lt;chr&gt;                &lt;int&gt;</span></span>
<span id="cb40-9"><a href="#cb40-9" tabindex="-1"></a><span class="co">#&gt; 1 name    Jiena McLellan           1</span></span>
<span id="cb40-10"><a href="#cb40-10" tabindex="-1"></a><span class="co">#&gt; 2 company Toyota                   1</span></span>
<span id="cb40-11"><a href="#cb40-11" tabindex="-1"></a><span class="co">#&gt; 3 name    John Smith               2</span></span>
<span id="cb40-12"><a href="#cb40-12" tabindex="-1"></a><span class="co">#&gt; 4 company google                   2</span></span>
<span id="cb40-13"><a href="#cb40-13" tabindex="-1"></a><span class="co">#&gt; 5 email   john@google.com          2</span></span>
<span id="cb40-14"><a href="#cb40-14" tabindex="-1"></a><span class="co">#&gt; 6 name    Huxley Ratcliffe         3</span></span></code></pre></div>
<p>Now that we have a unique identifier for each person, we can pivot
<code>field</code> and <code>value</code> into the columns:</p>
<div class="sourceCode" id="cb41"><pre class="sourceCode r"><code class="sourceCode r"><span id="cb41-1"><a href="#cb41-1" tabindex="-1"></a>contacts <span class="sc">%&gt;%</span> </span>
<span id="cb41-2"><a href="#cb41-2" tabindex="-1"></a>  <span class="fu">pivot_wider</span>(</span>
<span id="cb41-3"><a href="#cb41-3" tabindex="-1"></a>    <span class="at">names_from =</span> field, </span>
<span id="cb41-4"><a href="#cb41-4" tabindex="-1"></a>    <span class="at">values_from =</span> value</span>
<span id="cb41-5"><a href="#cb41-5" tabindex="-1"></a>  )</span>
<span id="cb41-6"><a href="#cb41-6" tabindex="-1"></a><span class="co">#&gt; # A tibble: 3 × 4</span></span>
<span id="cb41-7"><a href="#cb41-7" tabindex="-1"></a><span class="co">#&gt;   person_id name             company email          </span></span>
<span id="cb41-8"><a href="#cb41-8" tabindex="-1"></a><span class="co">#&gt;       &lt;int&gt; &lt;chr&gt;            &lt;chr&gt;   &lt;chr&gt;          </span></span>
<span id="cb41-9"><a href="#cb41-9" tabindex="-1"></a><span class="co">#&gt; 1         1 Jiena McLellan   Toyota  &lt;NA&gt;           </span></span>
<span id="cb41-10"><a href="#cb41-10" tabindex="-1"></a><span class="co">#&gt; 2         2 John Smith       google  john@google.com</span></span>
<span id="cb41-11"><a href="#cb41-11" tabindex="-1"></a><span class="co">#&gt; 3         3 Huxley Ratcliffe &lt;NA&gt;    &lt;NA&gt;</span></span></code></pre></div>
</div>
</div>
<div id="longer-then-wider" class="section level2">
<h2>Longer, then wider</h2>
<p>Some problems can’t be solved by pivoting in a single direction. The
examples in this section show how you might combine
<code>pivot_longer()</code> and <code>pivot_wider()</code> to solve more
complex problems.</p>
<div id="world-bank" class="section level3">
<h3>World bank</h3>
<p><code>world_bank_pop</code> contains data from the World Bank about
population per country from 2000 to 2018.</p>
<div class="sourceCode" id="cb42"><pre class="sourceCode r"><code class="sourceCode r"><span id="cb42-1"><a href="#cb42-1" tabindex="-1"></a>world_bank_pop</span>
<span id="cb42-2"><a href="#cb42-2" tabindex="-1"></a><span class="co">#&gt; # A tibble: 1,064 × 20</span></span>
<span id="cb42-3"><a href="#cb42-3" tabindex="-1"></a><span class="co">#&gt;    country indicator      `2000`  `2001`  `2002`  `2003`  `2004`  `2005`  `2006`</span></span>
<span id="cb42-4"><a href="#cb42-4" tabindex="-1"></a><span class="co">#&gt;    &lt;chr&gt;   &lt;chr&gt;           &lt;dbl&gt;   &lt;dbl&gt;   &lt;dbl&gt;   &lt;dbl&gt;   &lt;dbl&gt;   &lt;dbl&gt;   &lt;dbl&gt;</span></span>
<span id="cb42-5"><a href="#cb42-5" tabindex="-1"></a><span class="co">#&gt;  1 ABW     SP.URB.TOTL    4.16e4 4.20e+4 4.22e+4 4.23e+4 4.23e+4 4.24e+4 4.26e+4</span></span>
<span id="cb42-6"><a href="#cb42-6" tabindex="-1"></a><span class="co">#&gt;  2 ABW     SP.URB.GROW    1.66e0 9.56e-1 4.01e-1 1.97e-1 9.46e-2 1.94e-1 3.67e-1</span></span>
<span id="cb42-7"><a href="#cb42-7" tabindex="-1"></a><span class="co">#&gt;  3 ABW     SP.POP.TOTL    8.91e4 9.07e+4 9.18e+4 9.27e+4 9.35e+4 9.45e+4 9.56e+4</span></span>
<span id="cb42-8"><a href="#cb42-8" tabindex="-1"></a><span class="co">#&gt;  4 ABW     SP.POP.GROW    2.54e0 1.77e+0 1.19e+0 9.97e-1 9.01e-1 1.00e+0 1.18e+0</span></span>
<span id="cb42-9"><a href="#cb42-9" tabindex="-1"></a><span class="co">#&gt;  5 AFE     SP.URB.TOTL    1.16e8 1.20e+8 1.24e+8 1.29e+8 1.34e+8 1.39e+8 1.44e+8</span></span>
<span id="cb42-10"><a href="#cb42-10" tabindex="-1"></a><span class="co">#&gt;  6 AFE     SP.URB.GROW    3.60e0 3.66e+0 3.72e+0 3.71e+0 3.74e+0 3.81e+0 3.81e+0</span></span>
<span id="cb42-11"><a href="#cb42-11" tabindex="-1"></a><span class="co">#&gt;  7 AFE     SP.POP.TOTL    4.02e8 4.12e+8 4.23e+8 4.34e+8 4.45e+8 4.57e+8 4.70e+8</span></span>
<span id="cb42-12"><a href="#cb42-12" tabindex="-1"></a><span class="co">#&gt;  8 AFE     SP.POP.GROW    2.58e0 2.59e+0 2.61e+0 2.62e+0 2.64e+0 2.67e+0 2.70e+0</span></span>
<span id="cb42-13"><a href="#cb42-13" tabindex="-1"></a><span class="co">#&gt;  9 AFG     SP.URB.TOTL    4.31e6 4.36e+6 4.67e+6 5.06e+6 5.30e+6 5.54e+6 5.83e+6</span></span>
<span id="cb42-14"><a href="#cb42-14" tabindex="-1"></a><span class="co">#&gt; 10 AFG     SP.URB.GROW    1.86e0 1.15e+0 6.86e+0 7.95e+0 4.59e+0 4.47e+0 5.03e+0</span></span>
<span id="cb42-15"><a href="#cb42-15" tabindex="-1"></a><span class="co">#&gt; # ℹ 1,054 more rows</span></span>
<span id="cb42-16"><a href="#cb42-16" tabindex="-1"></a><span class="co">#&gt; # ℹ 11 more variables: `2007` &lt;dbl&gt;, `2008` &lt;dbl&gt;, `2009` &lt;dbl&gt;, `2010` &lt;dbl&gt;,</span></span>
<span id="cb42-17"><a href="#cb42-17" tabindex="-1"></a><span class="co">#&gt; #   `2011` &lt;dbl&gt;, `2012` &lt;dbl&gt;, `2013` &lt;dbl&gt;, `2014` &lt;dbl&gt;, `2015` &lt;dbl&gt;,</span></span>
<span id="cb42-18"><a href="#cb42-18" tabindex="-1"></a><span class="co">#&gt; #   `2016` &lt;dbl&gt;, `2017` &lt;dbl&gt;</span></span></code></pre></div>
<p>My goal is to produce a tidy dataset where each variable is in a
column. It’s not obvious exactly what steps are needed yet, but I’ll
start with the most obvious problem: year is spread across multiple
columns.</p>
<div class="sourceCode" id="cb43"><pre class="sourceCode r"><code class="sourceCode r"><span id="cb43-1"><a href="#cb43-1" tabindex="-1"></a>pop2 <span class="ot">&lt;-</span> world_bank_pop <span class="sc">%&gt;%</span> </span>
<span id="cb43-2"><a href="#cb43-2" tabindex="-1"></a>  <span class="fu">pivot_longer</span>(</span>
<span id="cb43-3"><a href="#cb43-3" tabindex="-1"></a>    <span class="at">cols =</span> <span class="st">`</span><span class="at">2000</span><span class="st">`</span><span class="sc">:</span><span class="st">`</span><span class="at">2017</span><span class="st">`</span>, </span>
<span id="cb43-4"><a href="#cb43-4" tabindex="-1"></a>    <span class="at">names_to =</span> <span class="st">&quot;year&quot;</span>, </span>
<span id="cb43-5"><a href="#cb43-5" tabindex="-1"></a>    <span class="at">values_to =</span> <span class="st">&quot;value&quot;</span></span>
<span id="cb43-6"><a href="#cb43-6" tabindex="-1"></a>  )</span>
<span id="cb43-7"><a href="#cb43-7" tabindex="-1"></a>pop2</span>
<span id="cb43-8"><a href="#cb43-8" tabindex="-1"></a><span class="co">#&gt; # A tibble: 19,152 × 4</span></span>
<span id="cb43-9"><a href="#cb43-9" tabindex="-1"></a><span class="co">#&gt;    country indicator   year  value</span></span>
<span id="cb43-10"><a href="#cb43-10" tabindex="-1"></a><span class="co">#&gt;    &lt;chr&gt;   &lt;chr&gt;       &lt;chr&gt; &lt;dbl&gt;</span></span>
<span id="cb43-11"><a href="#cb43-11" tabindex="-1"></a><span class="co">#&gt;  1 ABW     SP.URB.TOTL 2000  41625</span></span>
<span id="cb43-12"><a href="#cb43-12" tabindex="-1"></a><span class="co">#&gt;  2 ABW     SP.URB.TOTL 2001  42025</span></span>
<span id="cb43-13"><a href="#cb43-13" tabindex="-1"></a><span class="co">#&gt;  3 ABW     SP.URB.TOTL 2002  42194</span></span>
<span id="cb43-14"><a href="#cb43-14" tabindex="-1"></a><span class="co">#&gt;  4 ABW     SP.URB.TOTL 2003  42277</span></span>
<span id="cb43-15"><a href="#cb43-15" tabindex="-1"></a><span class="co">#&gt;  5 ABW     SP.URB.TOTL 2004  42317</span></span>
<span id="cb43-16"><a href="#cb43-16" tabindex="-1"></a><span class="co">#&gt;  6 ABW     SP.URB.TOTL 2005  42399</span></span>
<span id="cb43-17"><a href="#cb43-17" tabindex="-1"></a><span class="co">#&gt;  7 ABW     SP.URB.TOTL 2006  42555</span></span>
<span id="cb43-18"><a href="#cb43-18" tabindex="-1"></a><span class="co">#&gt;  8 ABW     SP.URB.TOTL 2007  42729</span></span>
<span id="cb43-19"><a href="#cb43-19" tabindex="-1"></a><span class="co">#&gt;  9 ABW     SP.URB.TOTL 2008  42906</span></span>
<span id="cb43-20"><a href="#cb43-20" tabindex="-1"></a><span class="co">#&gt; 10 ABW     SP.URB.TOTL 2009  43079</span></span>
<span id="cb43-21"><a href="#cb43-21" tabindex="-1"></a><span class="co">#&gt; # ℹ 19,142 more rows</span></span></code></pre></div>
<p>Next we need to consider the <code>indicator</code> variable:</p>
<div class="sourceCode" id="cb44"><pre class="sourceCode r"><code class="sourceCode r"><span id="cb44-1"><a href="#cb44-1" tabindex="-1"></a>pop2 <span class="sc">%&gt;%</span> </span>
<span id="cb44-2"><a href="#cb44-2" tabindex="-1"></a>  <span class="fu">count</span>(indicator)</span>
<span id="cb44-3"><a href="#cb44-3" tabindex="-1"></a><span class="co">#&gt; # A tibble: 4 × 2</span></span>
<span id="cb44-4"><a href="#cb44-4" tabindex="-1"></a><span class="co">#&gt;   indicator       n</span></span>
<span id="cb44-5"><a href="#cb44-5" tabindex="-1"></a><span class="co">#&gt;   &lt;chr&gt;       &lt;int&gt;</span></span>
<span id="cb44-6"><a href="#cb44-6" tabindex="-1"></a><span class="co">#&gt; 1 SP.POP.GROW  4788</span></span>
<span id="cb44-7"><a href="#cb44-7" tabindex="-1"></a><span class="co">#&gt; 2 SP.POP.TOTL  4788</span></span>
<span id="cb44-8"><a href="#cb44-8" tabindex="-1"></a><span class="co">#&gt; 3 SP.URB.GROW  4788</span></span>
<span id="cb44-9"><a href="#cb44-9" tabindex="-1"></a><span class="co">#&gt; 4 SP.URB.TOTL  4788</span></span></code></pre></div>
<p>Here <code>SP.POP.GROW</code> is population growth,
<code>SP.POP.TOTL</code> is total population, and <code>SP.URB.*</code>
are the same but only for urban areas. Let’s split this up into two
variables: <code>area</code> (total or urban) and the actual variable
(population or growth):</p>
<div class="sourceCode" id="cb45"><pre class="sourceCode r"><code class="sourceCode r"><span id="cb45-1"><a href="#cb45-1" tabindex="-1"></a>pop3 <span class="ot">&lt;-</span> pop2 <span class="sc">%&gt;%</span> </span>
<span id="cb45-2"><a href="#cb45-2" tabindex="-1"></a>  <span class="fu">separate</span>(indicator, <span class="fu">c</span>(<span class="cn">NA</span>, <span class="st">&quot;area&quot;</span>, <span class="st">&quot;variable&quot;</span>))</span>
<span id="cb45-3"><a href="#cb45-3" tabindex="-1"></a>pop3</span>
<span id="cb45-4"><a href="#cb45-4" tabindex="-1"></a><span class="co">#&gt; # A tibble: 19,152 × 5</span></span>
<span id="cb45-5"><a href="#cb45-5" tabindex="-1"></a><span class="co">#&gt;    country area  variable year  value</span></span>
<span id="cb45-6"><a href="#cb45-6" tabindex="-1"></a><span class="co">#&gt;    &lt;chr&gt;   &lt;chr&gt; &lt;chr&gt;    &lt;chr&gt; &lt;dbl&gt;</span></span>
<span id="cb45-7"><a href="#cb45-7" tabindex="-1"></a><span class="co">#&gt;  1 ABW     URB   TOTL     2000  41625</span></span>
<span id="cb45-8"><a href="#cb45-8" tabindex="-1"></a><span class="co">#&gt;  2 ABW     URB   TOTL     2001  42025</span></span>
<span id="cb45-9"><a href="#cb45-9" tabindex="-1"></a><span class="co">#&gt;  3 ABW     URB   TOTL     2002  42194</span></span>
<span id="cb45-10"><a href="#cb45-10" tabindex="-1"></a><span class="co">#&gt;  4 ABW     URB   TOTL     2003  42277</span></span>
<span id="cb45-11"><a href="#cb45-11" tabindex="-1"></a><span class="co">#&gt;  5 ABW     URB   TOTL     2004  42317</span></span>
<span id="cb45-12"><a href="#cb45-12" tabindex="-1"></a><span class="co">#&gt;  6 ABW     URB   TOTL     2005  42399</span></span>
<span id="cb45-13"><a href="#cb45-13" tabindex="-1"></a><span class="co">#&gt;  7 ABW     URB   TOTL     2006  42555</span></span>
<span id="cb45-14"><a href="#cb45-14" tabindex="-1"></a><span class="co">#&gt;  8 ABW     URB   TOTL     2007  42729</span></span>
<span id="cb45-15"><a href="#cb45-15" tabindex="-1"></a><span class="co">#&gt;  9 ABW     URB   TOTL     2008  42906</span></span>
<span id="cb45-16"><a href="#cb45-16" tabindex="-1"></a><span class="co">#&gt; 10 ABW     URB   TOTL     2009  43079</span></span>
<span id="cb45-17"><a href="#cb45-17" tabindex="-1"></a><span class="co">#&gt; # ℹ 19,142 more rows</span></span></code></pre></div>
<p>Now we can complete the tidying by pivoting <code>variable</code> and
<code>value</code> to make <code>TOTL</code> and <code>GROW</code>
columns:</p>
<div class="sourceCode" id="cb46"><pre class="sourceCode r"><code class="sourceCode r"><span id="cb46-1"><a href="#cb46-1" tabindex="-1"></a>pop3 <span class="sc">%&gt;%</span> </span>
<span id="cb46-2"><a href="#cb46-2" tabindex="-1"></a>  <span class="fu">pivot_wider</span>(</span>
<span id="cb46-3"><a href="#cb46-3" tabindex="-1"></a>    <span class="at">names_from =</span> variable, </span>
<span id="cb46-4"><a href="#cb46-4" tabindex="-1"></a>    <span class="at">values_from =</span> value</span>
<span id="cb46-5"><a href="#cb46-5" tabindex="-1"></a>  )</span>
<span id="cb46-6"><a href="#cb46-6" tabindex="-1"></a><span class="co">#&gt; # A tibble: 9,576 × 5</span></span>
<span id="cb46-7"><a href="#cb46-7" tabindex="-1"></a><span class="co">#&gt;    country area  year   TOTL   GROW</span></span>
<span id="cb46-8"><a href="#cb46-8" tabindex="-1"></a><span class="co">#&gt;    &lt;chr&gt;   &lt;chr&gt; &lt;chr&gt; &lt;dbl&gt;  &lt;dbl&gt;</span></span>
<span id="cb46-9"><a href="#cb46-9" tabindex="-1"></a><span class="co">#&gt;  1 ABW     URB   2000  41625 1.66  </span></span>
<span id="cb46-10"><a href="#cb46-10" tabindex="-1"></a><span class="co">#&gt;  2 ABW     URB   2001  42025 0.956 </span></span>
<span id="cb46-11"><a href="#cb46-11" tabindex="-1"></a><span class="co">#&gt;  3 ABW     URB   2002  42194 0.401 </span></span>
<span id="cb46-12"><a href="#cb46-12" tabindex="-1"></a><span class="co">#&gt;  4 ABW     URB   2003  42277 0.197 </span></span>
<span id="cb46-13"><a href="#cb46-13" tabindex="-1"></a><span class="co">#&gt;  5 ABW     URB   2004  42317 0.0946</span></span>
<span id="cb46-14"><a href="#cb46-14" tabindex="-1"></a><span class="co">#&gt;  6 ABW     URB   2005  42399 0.194 </span></span>
<span id="cb46-15"><a href="#cb46-15" tabindex="-1"></a><span class="co">#&gt;  7 ABW     URB   2006  42555 0.367 </span></span>
<span id="cb46-16"><a href="#cb46-16" tabindex="-1"></a><span class="co">#&gt;  8 ABW     URB   2007  42729 0.408 </span></span>
<span id="cb46-17"><a href="#cb46-17" tabindex="-1"></a><span class="co">#&gt;  9 ABW     URB   2008  42906 0.413 </span></span>
<span id="cb46-18"><a href="#cb46-18" tabindex="-1"></a><span class="co">#&gt; 10 ABW     URB   2009  43079 0.402 </span></span>
<span id="cb46-19"><a href="#cb46-19" tabindex="-1"></a><span class="co">#&gt; # ℹ 9,566 more rows</span></span></code></pre></div>
</div>
<div id="multi-choice" class="section level3">
<h3>Multi-choice</h3>
<p>Based on a suggestion by <a href="https://github.com/MaximeWack">Maxime Wack</a>, <a href="https://github.com/tidyverse/tidyr/issues/384" class="uri">https://github.com/tidyverse/tidyr/issues/384</a>), the
final example shows how to deal with a common way of recording multiple
choice data. Often you will get such data as follows:</p>
<div class="sourceCode" id="cb47"><pre class="sourceCode r"><code class="sourceCode r"><span id="cb47-1"><a href="#cb47-1" tabindex="-1"></a>multi <span class="ot">&lt;-</span> <span class="fu">tribble</span>(</span>
<span id="cb47-2"><a href="#cb47-2" tabindex="-1"></a>  <span class="sc">~</span>id, <span class="sc">~</span>choice1, <span class="sc">~</span>choice2, <span class="sc">~</span>choice3,</span>
<span id="cb47-3"><a href="#cb47-3" tabindex="-1"></a>  <span class="dv">1</span>, <span class="st">&quot;A&quot;</span>, <span class="st">&quot;B&quot;</span>, <span class="st">&quot;C&quot;</span>,</span>
<span id="cb47-4"><a href="#cb47-4" tabindex="-1"></a>  <span class="dv">2</span>, <span class="st">&quot;C&quot;</span>, <span class="st">&quot;B&quot;</span>,  <span class="cn">NA</span>,</span>
<span id="cb47-5"><a href="#cb47-5" tabindex="-1"></a>  <span class="dv">3</span>, <span class="st">&quot;D&quot;</span>,  <span class="cn">NA</span>,  <span class="cn">NA</span>,</span>
<span id="cb47-6"><a href="#cb47-6" tabindex="-1"></a>  <span class="dv">4</span>, <span class="st">&quot;B&quot;</span>, <span class="st">&quot;D&quot;</span>,  <span class="cn">NA</span></span>
<span id="cb47-7"><a href="#cb47-7" tabindex="-1"></a>)</span></code></pre></div>
<p>But the actual order isn’t important, and you’d prefer to have the
individual questions in the columns. You can achieve the desired
transformation in two steps. First, you make the data longer,
eliminating the explicit <code>NA</code>s, and adding a column to
indicate that this choice was chosen:</p>
<div class="sourceCode" id="cb48"><pre class="sourceCode r"><code class="sourceCode r"><span id="cb48-1"><a href="#cb48-1" tabindex="-1"></a>multi2 <span class="ot">&lt;-</span> multi <span class="sc">%&gt;%</span> </span>
<span id="cb48-2"><a href="#cb48-2" tabindex="-1"></a>  <span class="fu">pivot_longer</span>(</span>
<span id="cb48-3"><a href="#cb48-3" tabindex="-1"></a>    <span class="at">cols =</span> <span class="sc">!</span>id, </span>
<span id="cb48-4"><a href="#cb48-4" tabindex="-1"></a>    <span class="at">values_drop_na =</span> <span class="cn">TRUE</span></span>
<span id="cb48-5"><a href="#cb48-5" tabindex="-1"></a>  ) <span class="sc">%&gt;%</span> </span>
<span id="cb48-6"><a href="#cb48-6" tabindex="-1"></a>  <span class="fu">mutate</span>(<span class="at">checked =</span> <span class="cn">TRUE</span>)</span>
<span id="cb48-7"><a href="#cb48-7" tabindex="-1"></a>multi2</span>
<span id="cb48-8"><a href="#cb48-8" tabindex="-1"></a><span class="co">#&gt; # A tibble: 8 × 4</span></span>
<span id="cb48-9"><a href="#cb48-9" tabindex="-1"></a><span class="co">#&gt;      id name    value checked</span></span>
<span id="cb48-10"><a href="#cb48-10" tabindex="-1"></a><span class="co">#&gt;   &lt;dbl&gt; &lt;chr&gt;   &lt;chr&gt; &lt;lgl&gt;  </span></span>
<span id="cb48-11"><a href="#cb48-11" tabindex="-1"></a><span class="co">#&gt; 1     1 choice1 A     TRUE   </span></span>
<span id="cb48-12"><a href="#cb48-12" tabindex="-1"></a><span class="co">#&gt; 2     1 choice2 B     TRUE   </span></span>
<span id="cb48-13"><a href="#cb48-13" tabindex="-1"></a><span class="co">#&gt; 3     1 choice3 C     TRUE   </span></span>
<span id="cb48-14"><a href="#cb48-14" tabindex="-1"></a><span class="co">#&gt; 4     2 choice1 C     TRUE   </span></span>
<span id="cb48-15"><a href="#cb48-15" tabindex="-1"></a><span class="co">#&gt; 5     2 choice2 B     TRUE   </span></span>
<span id="cb48-16"><a href="#cb48-16" tabindex="-1"></a><span class="co">#&gt; 6     3 choice1 D     TRUE   </span></span>
<span id="cb48-17"><a href="#cb48-17" tabindex="-1"></a><span class="co">#&gt; 7     4 choice1 B     TRUE   </span></span>
<span id="cb48-18"><a href="#cb48-18" tabindex="-1"></a><span class="co">#&gt; 8     4 choice2 D     TRUE</span></span></code></pre></div>
<p>Then you make the data wider, filling in the missing observations
with <code>FALSE</code>:</p>
<div class="sourceCode" id="cb49"><pre class="sourceCode r"><code class="sourceCode r"><span id="cb49-1"><a href="#cb49-1" tabindex="-1"></a>multi2 <span class="sc">%&gt;%</span> </span>
<span id="cb49-2"><a href="#cb49-2" tabindex="-1"></a>  <span class="fu">pivot_wider</span>(</span>
<span id="cb49-3"><a href="#cb49-3" tabindex="-1"></a>    <span class="at">id_cols =</span> id,</span>
<span id="cb49-4"><a href="#cb49-4" tabindex="-1"></a>    <span class="at">names_from =</span> value, </span>
<span id="cb49-5"><a href="#cb49-5" tabindex="-1"></a>    <span class="at">values_from =</span> checked, </span>
<span id="cb49-6"><a href="#cb49-6" tabindex="-1"></a>    <span class="at">values_fill =</span> <span class="cn">FALSE</span></span>
<span id="cb49-7"><a href="#cb49-7" tabindex="-1"></a>  )</span>
<span id="cb49-8"><a href="#cb49-8" tabindex="-1"></a><span class="co">#&gt; # A tibble: 4 × 5</span></span>
<span id="cb49-9"><a href="#cb49-9" tabindex="-1"></a><span class="co">#&gt;      id A     B     C     D    </span></span>
<span id="cb49-10"><a href="#cb49-10" tabindex="-1"></a><span class="co">#&gt;   &lt;dbl&gt; &lt;lgl&gt; &lt;lgl&gt; &lt;lgl&gt; &lt;lgl&gt;</span></span>
<span id="cb49-11"><a href="#cb49-11" tabindex="-1"></a><span class="co">#&gt; 1     1 TRUE  TRUE  TRUE  FALSE</span></span>
<span id="cb49-12"><a href="#cb49-12" tabindex="-1"></a><span class="co">#&gt; 2     2 FALSE TRUE  TRUE  FALSE</span></span>
<span id="cb49-13"><a href="#cb49-13" tabindex="-1"></a><span class="co">#&gt; 3     3 FALSE FALSE FALSE TRUE </span></span>
<span id="cb49-14"><a href="#cb49-14" tabindex="-1"></a><span class="co">#&gt; 4     4 FALSE TRUE  FALSE TRUE</span></span></code></pre></div>
</div>
</div>
<div id="manual-specs" class="section level2">
<h2>Manual specs</h2>
<p>The arguments to <code>pivot_longer()</code> and
<code>pivot_wider()</code> allow you to pivot a wide range of datasets.
But the creativity that people apply to their data structures is
seemingly endless, so it’s quite possible that you will encounter a
dataset that you can’t immediately see how to reshape with
<code>pivot_longer()</code> and <code>pivot_wider()</code>. To gain more
control over pivoting, you can instead create a “spec” data frame that
describes exactly how data stored in the column names becomes variables
(and vice versa). This section introduces you to the spec data
structure, and show you how to use it when <code>pivot_longer()</code>
and <code>pivot_wider()</code> are insufficient.</p>
<div id="longer-1" class="section level3">
<h3>Longer</h3>
<p>To see how this works, lets return to the simplest case of pivoting
applied to the <code>relig_income</code> dataset. Now pivoting happens
in two steps: we first create a spec object (using
<code>build_longer_spec()</code>) then use that to describe the pivoting
operation:</p>
<div class="sourceCode" id="cb50"><pre class="sourceCode r"><code class="sourceCode r"><span id="cb50-1"><a href="#cb50-1" tabindex="-1"></a>spec <span class="ot">&lt;-</span> relig_income <span class="sc">%&gt;%</span> </span>
<span id="cb50-2"><a href="#cb50-2" tabindex="-1"></a>  <span class="fu">build_longer_spec</span>(</span>
<span id="cb50-3"><a href="#cb50-3" tabindex="-1"></a>    <span class="at">cols =</span> <span class="sc">!</span>religion, </span>
<span id="cb50-4"><a href="#cb50-4" tabindex="-1"></a>    <span class="at">names_to =</span> <span class="st">&quot;income&quot;</span>,</span>
<span id="cb50-5"><a href="#cb50-5" tabindex="-1"></a>    <span class="at">values_to =</span> <span class="st">&quot;count&quot;</span></span>
<span id="cb50-6"><a href="#cb50-6" tabindex="-1"></a>  )</span>
<span id="cb50-7"><a href="#cb50-7" tabindex="-1"></a><span class="fu">pivot_longer_spec</span>(relig_income, spec)</span>
<span id="cb50-8"><a href="#cb50-8" tabindex="-1"></a><span class="co">#&gt; # A tibble: 180 × 3</span></span>
<span id="cb50-9"><a href="#cb50-9" tabindex="-1"></a><span class="co">#&gt;    religion income             count</span></span>
<span id="cb50-10"><a href="#cb50-10" tabindex="-1"></a><span class="co">#&gt;    &lt;chr&gt;    &lt;chr&gt;              &lt;dbl&gt;</span></span>
<span id="cb50-11"><a href="#cb50-11" tabindex="-1"></a><span class="co">#&gt;  1 Agnostic &lt;$10k                 27</span></span>
<span id="cb50-12"><a href="#cb50-12" tabindex="-1"></a><span class="co">#&gt;  2 Agnostic $10-20k               34</span></span>
<span id="cb50-13"><a href="#cb50-13" tabindex="-1"></a><span class="co">#&gt;  3 Agnostic $20-30k               60</span></span>
<span id="cb50-14"><a href="#cb50-14" tabindex="-1"></a><span class="co">#&gt;  4 Agnostic $30-40k               81</span></span>
<span id="cb50-15"><a href="#cb50-15" tabindex="-1"></a><span class="co">#&gt;  5 Agnostic $40-50k               76</span></span>
<span id="cb50-16"><a href="#cb50-16" tabindex="-1"></a><span class="co">#&gt;  6 Agnostic $50-75k              137</span></span>
<span id="cb50-17"><a href="#cb50-17" tabindex="-1"></a><span class="co">#&gt;  7 Agnostic $75-100k             122</span></span>
<span id="cb50-18"><a href="#cb50-18" tabindex="-1"></a><span class="co">#&gt;  8 Agnostic $100-150k            109</span></span>
<span id="cb50-19"><a href="#cb50-19" tabindex="-1"></a><span class="co">#&gt;  9 Agnostic &gt;150k                 84</span></span>
<span id="cb50-20"><a href="#cb50-20" tabindex="-1"></a><span class="co">#&gt; 10 Agnostic Don&#39;t know/refused    96</span></span>
<span id="cb50-21"><a href="#cb50-21" tabindex="-1"></a><span class="co">#&gt; # ℹ 170 more rows</span></span></code></pre></div>
<p>(This gives the same result as before, just with more code. There’s
no need to use it here, it is presented as a simple example for using
<code>spec</code>.)</p>
<p>What does <code>spec</code> look like? It’s a data frame with one row
for each column in the wide format version of the data that is not
present in the long format, and two special columns that start with
<code>.</code>:</p>
<ul>
<li><code>.name</code> gives the name of the column.</li>
<li><code>.value</code> gives the name of the column that the values in
the cells will go into.</li>
</ul>
<p>There is also one column in <code>spec</code> for each column present
in the long format of the data that is not present in the wide format of
the data. This corresponds to the <code>names_to</code> argument in
<code>pivot_longer()</code> and <code>build_longer_spec()</code> and the
<code>names_from</code> argument in <code>pivot_wider()</code> and
<code>build_wider_spec()</code>. In this example, the income column is a
character vector of the names of columns being pivoted.</p>
<div class="sourceCode" id="cb51"><pre class="sourceCode r"><code class="sourceCode r"><span id="cb51-1"><a href="#cb51-1" tabindex="-1"></a>spec</span>
<span id="cb51-2"><a href="#cb51-2" tabindex="-1"></a><span class="co">#&gt; # A tibble: 10 × 3</span></span>
<span id="cb51-3"><a href="#cb51-3" tabindex="-1"></a><span class="co">#&gt;    .name              .value income            </span></span>
<span id="cb51-4"><a href="#cb51-4" tabindex="-1"></a><span class="co">#&gt;    &lt;chr&gt;              &lt;chr&gt;  &lt;chr&gt;             </span></span>
<span id="cb51-5"><a href="#cb51-5" tabindex="-1"></a><span class="co">#&gt;  1 &lt;$10k              count  &lt;$10k             </span></span>
<span id="cb51-6"><a href="#cb51-6" tabindex="-1"></a><span class="co">#&gt;  2 $10-20k            count  $10-20k           </span></span>
<span id="cb51-7"><a href="#cb51-7" tabindex="-1"></a><span class="co">#&gt;  3 $20-30k            count  $20-30k           </span></span>
<span id="cb51-8"><a href="#cb51-8" tabindex="-1"></a><span class="co">#&gt;  4 $30-40k            count  $30-40k           </span></span>
<span id="cb51-9"><a href="#cb51-9" tabindex="-1"></a><span class="co">#&gt;  5 $40-50k            count  $40-50k           </span></span>
<span id="cb51-10"><a href="#cb51-10" tabindex="-1"></a><span class="co">#&gt;  6 $50-75k            count  $50-75k           </span></span>
<span id="cb51-11"><a href="#cb51-11" tabindex="-1"></a><span class="co">#&gt;  7 $75-100k           count  $75-100k          </span></span>
<span id="cb51-12"><a href="#cb51-12" tabindex="-1"></a><span class="co">#&gt;  8 $100-150k          count  $100-150k         </span></span>
<span id="cb51-13"><a href="#cb51-13" tabindex="-1"></a><span class="co">#&gt;  9 &gt;150k              count  &gt;150k             </span></span>
<span id="cb51-14"><a href="#cb51-14" tabindex="-1"></a><span class="co">#&gt; 10 Don&#39;t know/refused count  Don&#39;t know/refused</span></span></code></pre></div>
</div>
<div id="wider-1" class="section level3">
<h3>Wider</h3>
<p>Below we widen <code>us_rent_income</code> with
<code>pivot_wider()</code>. The result is ok, but I think it could be
improved:</p>
<div class="sourceCode" id="cb52"><pre class="sourceCode r"><code class="sourceCode r"><span id="cb52-1"><a href="#cb52-1" tabindex="-1"></a>us_rent_income <span class="sc">%&gt;%</span> </span>
<span id="cb52-2"><a href="#cb52-2" tabindex="-1"></a>  <span class="fu">pivot_wider</span>(</span>
<span id="cb52-3"><a href="#cb52-3" tabindex="-1"></a>    <span class="at">names_from =</span> variable, </span>
<span id="cb52-4"><a href="#cb52-4" tabindex="-1"></a>    <span class="at">values_from =</span> <span class="fu">c</span>(estimate, moe)</span>
<span id="cb52-5"><a href="#cb52-5" tabindex="-1"></a>  )</span>
<span id="cb52-6"><a href="#cb52-6" tabindex="-1"></a><span class="co">#&gt; # A tibble: 52 × 6</span></span>
<span id="cb52-7"><a href="#cb52-7" tabindex="-1"></a><span class="co">#&gt;    GEOID NAME                 estimate_income estimate_rent moe_income moe_rent</span></span>
<span id="cb52-8"><a href="#cb52-8" tabindex="-1"></a><span class="co">#&gt;    &lt;chr&gt; &lt;chr&gt;                          &lt;dbl&gt;         &lt;dbl&gt;      &lt;dbl&gt;    &lt;dbl&gt;</span></span>
<span id="cb52-9"><a href="#cb52-9" tabindex="-1"></a><span class="co">#&gt;  1 01    Alabama                        24476           747        136        3</span></span>
<span id="cb52-10"><a href="#cb52-10" tabindex="-1"></a><span class="co">#&gt;  2 02    Alaska                         32940          1200        508       13</span></span>
<span id="cb52-11"><a href="#cb52-11" tabindex="-1"></a><span class="co">#&gt;  3 04    Arizona                        27517           972        148        4</span></span>
<span id="cb52-12"><a href="#cb52-12" tabindex="-1"></a><span class="co">#&gt;  4 05    Arkansas                       23789           709        165        5</span></span>
<span id="cb52-13"><a href="#cb52-13" tabindex="-1"></a><span class="co">#&gt;  5 06    California                     29454          1358        109        3</span></span>
<span id="cb52-14"><a href="#cb52-14" tabindex="-1"></a><span class="co">#&gt;  6 08    Colorado                       32401          1125        109        5</span></span>
<span id="cb52-15"><a href="#cb52-15" tabindex="-1"></a><span class="co">#&gt;  7 09    Connecticut                    35326          1123        195        5</span></span>
<span id="cb52-16"><a href="#cb52-16" tabindex="-1"></a><span class="co">#&gt;  8 10    Delaware                       31560          1076        247       10</span></span>
<span id="cb52-17"><a href="#cb52-17" tabindex="-1"></a><span class="co">#&gt;  9 11    District of Columbia           43198          1424        681       17</span></span>
<span id="cb52-18"><a href="#cb52-18" tabindex="-1"></a><span class="co">#&gt; 10 12    Florida                        25952          1077         70        3</span></span>
<span id="cb52-19"><a href="#cb52-19" tabindex="-1"></a><span class="co">#&gt; # ℹ 42 more rows</span></span></code></pre></div>
<p>I think it would be better to have columns <code>income</code>,
<code>rent</code>, <code>income_moe</code>, and <code>rent_moe</code>,
which we can achieve with a manual spec. The current spec looks like
this:</p>
<div class="sourceCode" id="cb53"><pre class="sourceCode r"><code class="sourceCode r"><span id="cb53-1"><a href="#cb53-1" tabindex="-1"></a>spec1 <span class="ot">&lt;-</span> us_rent_income <span class="sc">%&gt;%</span> </span>
<span id="cb53-2"><a href="#cb53-2" tabindex="-1"></a>  <span class="fu">build_wider_spec</span>(</span>
<span id="cb53-3"><a href="#cb53-3" tabindex="-1"></a>    <span class="at">names_from =</span> variable, </span>
<span id="cb53-4"><a href="#cb53-4" tabindex="-1"></a>    <span class="at">values_from =</span> <span class="fu">c</span>(estimate, moe)</span>
<span id="cb53-5"><a href="#cb53-5" tabindex="-1"></a>  )</span>
<span id="cb53-6"><a href="#cb53-6" tabindex="-1"></a>spec1</span>
<span id="cb53-7"><a href="#cb53-7" tabindex="-1"></a><span class="co">#&gt; # A tibble: 4 × 3</span></span>
<span id="cb53-8"><a href="#cb53-8" tabindex="-1"></a><span class="co">#&gt;   .name           .value   variable</span></span>
<span id="cb53-9"><a href="#cb53-9" tabindex="-1"></a><span class="co">#&gt;   &lt;chr&gt;           &lt;chr&gt;    &lt;chr&gt;   </span></span>
<span id="cb53-10"><a href="#cb53-10" tabindex="-1"></a><span class="co">#&gt; 1 estimate_income estimate income  </span></span>
<span id="cb53-11"><a href="#cb53-11" tabindex="-1"></a><span class="co">#&gt; 2 estimate_rent   estimate rent    </span></span>
<span id="cb53-12"><a href="#cb53-12" tabindex="-1"></a><span class="co">#&gt; 3 moe_income      moe      income  </span></span>
<span id="cb53-13"><a href="#cb53-13" tabindex="-1"></a><span class="co">#&gt; 4 moe_rent        moe      rent</span></span></code></pre></div>
<p>For this case, we mutate <code>spec</code> to carefully construct the
column names:</p>
<div class="sourceCode" id="cb54"><pre class="sourceCode r"><code class="sourceCode r"><span id="cb54-1"><a href="#cb54-1" tabindex="-1"></a>spec2 <span class="ot">&lt;-</span> spec1 <span class="sc">%&gt;%</span></span>
<span id="cb54-2"><a href="#cb54-2" tabindex="-1"></a>  <span class="fu">mutate</span>(</span>
<span id="cb54-3"><a href="#cb54-3" tabindex="-1"></a>    <span class="at">.name =</span> <span class="fu">paste0</span>(variable, <span class="fu">ifelse</span>(.value <span class="sc">==</span> <span class="st">&quot;moe&quot;</span>, <span class="st">&quot;_moe&quot;</span>, <span class="st">&quot;&quot;</span>))</span>
<span id="cb54-4"><a href="#cb54-4" tabindex="-1"></a>  )</span>
<span id="cb54-5"><a href="#cb54-5" tabindex="-1"></a>spec2</span>
<span id="cb54-6"><a href="#cb54-6" tabindex="-1"></a><span class="co">#&gt; # A tibble: 4 × 3</span></span>
<span id="cb54-7"><a href="#cb54-7" tabindex="-1"></a><span class="co">#&gt;   .name      .value   variable</span></span>
<span id="cb54-8"><a href="#cb54-8" tabindex="-1"></a><span class="co">#&gt;   &lt;chr&gt;      &lt;chr&gt;    &lt;chr&gt;   </span></span>
<span id="cb54-9"><a href="#cb54-9" tabindex="-1"></a><span class="co">#&gt; 1 income     estimate income  </span></span>
<span id="cb54-10"><a href="#cb54-10" tabindex="-1"></a><span class="co">#&gt; 2 rent       estimate rent    </span></span>
<span id="cb54-11"><a href="#cb54-11" tabindex="-1"></a><span class="co">#&gt; 3 income_moe moe      income  </span></span>
<span id="cb54-12"><a href="#cb54-12" tabindex="-1"></a><span class="co">#&gt; 4 rent_moe   moe      rent</span></span></code></pre></div>
<p>Supplying this spec to <code>pivot_wider()</code> gives us the result
we’re looking for:</p>
<div class="sourceCode" id="cb55"><pre class="sourceCode r"><code class="sourceCode r"><span id="cb55-1"><a href="#cb55-1" tabindex="-1"></a>us_rent_income <span class="sc">%&gt;%</span> </span>
<span id="cb55-2"><a href="#cb55-2" tabindex="-1"></a>  <span class="fu">pivot_wider_spec</span>(spec2)</span>
<span id="cb55-3"><a href="#cb55-3" tabindex="-1"></a><span class="co">#&gt; # A tibble: 52 × 6</span></span>
<span id="cb55-4"><a href="#cb55-4" tabindex="-1"></a><span class="co">#&gt;    GEOID NAME                 income  rent income_moe rent_moe</span></span>
<span id="cb55-5"><a href="#cb55-5" tabindex="-1"></a><span class="co">#&gt;    &lt;chr&gt; &lt;chr&gt;                 &lt;dbl&gt; &lt;dbl&gt;      &lt;dbl&gt;    &lt;dbl&gt;</span></span>
<span id="cb55-6"><a href="#cb55-6" tabindex="-1"></a><span class="co">#&gt;  1 01    Alabama               24476   747        136        3</span></span>
<span id="cb55-7"><a href="#cb55-7" tabindex="-1"></a><span class="co">#&gt;  2 02    Alaska                32940  1200        508       13</span></span>
<span id="cb55-8"><a href="#cb55-8" tabindex="-1"></a><span class="co">#&gt;  3 04    Arizona               27517   972        148        4</span></span>
<span id="cb55-9"><a href="#cb55-9" tabindex="-1"></a><span class="co">#&gt;  4 05    Arkansas              23789   709        165        5</span></span>
<span id="cb55-10"><a href="#cb55-10" tabindex="-1"></a><span class="co">#&gt;  5 06    California            29454  1358        109        3</span></span>
<span id="cb55-11"><a href="#cb55-11" tabindex="-1"></a><span class="co">#&gt;  6 08    Colorado              32401  1125        109        5</span></span>
<span id="cb55-12"><a href="#cb55-12" tabindex="-1"></a><span class="co">#&gt;  7 09    Connecticut           35326  1123        195        5</span></span>
<span id="cb55-13"><a href="#cb55-13" tabindex="-1"></a><span class="co">#&gt;  8 10    Delaware              31560  1076        247       10</span></span>
<span id="cb55-14"><a href="#cb55-14" tabindex="-1"></a><span class="co">#&gt;  9 11    District of Columbia  43198  1424        681       17</span></span>
<span id="cb55-15"><a href="#cb55-15" tabindex="-1"></a><span class="co">#&gt; 10 12    Florida               25952  1077         70        3</span></span>
<span id="cb55-16"><a href="#cb55-16" tabindex="-1"></a><span class="co">#&gt; # ℹ 42 more rows</span></span></code></pre></div>
</div>
<div id="by-hand" class="section level3">
<h3>By hand</h3>
<p>Sometimes it’s not possible (or not convenient) to compute the spec,
and instead it’s more convenient to construct the spec “by hand”. For
example, take this <code>construction</code> data, which is lightly
modified from Table 5 “completions” found at <a href="https://www.census.gov/construction/nrc/index.html" class="uri">https://www.census.gov/construction/nrc/index.html</a>:</p>
<div class="sourceCode" id="cb56"><pre class="sourceCode r"><code class="sourceCode r"><span id="cb56-1"><a href="#cb56-1" tabindex="-1"></a>construction</span>
<span id="cb56-2"><a href="#cb56-2" tabindex="-1"></a><span class="co">#&gt; # A tibble: 9 × 9</span></span>
<span id="cb56-3"><a href="#cb56-3" tabindex="-1"></a><span class="co">#&gt;    Year Month  `1 unit` `2 to 4 units` `5 units or more` Northeast Midwest South</span></span>
<span id="cb56-4"><a href="#cb56-4" tabindex="-1"></a><span class="co">#&gt;   &lt;dbl&gt; &lt;chr&gt;     &lt;dbl&gt; &lt;lgl&gt;                      &lt;dbl&gt;     &lt;dbl&gt;   &lt;dbl&gt; &lt;dbl&gt;</span></span>
<span id="cb56-5"><a href="#cb56-5" tabindex="-1"></a><span class="co">#&gt; 1  2018 Janua…      859 NA                           348       114     169   596</span></span>
<span id="cb56-6"><a href="#cb56-6" tabindex="-1"></a><span class="co">#&gt; 2  2018 Febru…      882 NA                           400       138     160   655</span></span>
<span id="cb56-7"><a href="#cb56-7" tabindex="-1"></a><span class="co">#&gt; 3  2018 March       862 NA                           356       150     154   595</span></span>
<span id="cb56-8"><a href="#cb56-8" tabindex="-1"></a><span class="co">#&gt; 4  2018 April       797 NA                           447       144     196   613</span></span>
<span id="cb56-9"><a href="#cb56-9" tabindex="-1"></a><span class="co">#&gt; 5  2018 May         875 NA                           364        90     169   673</span></span>
<span id="cb56-10"><a href="#cb56-10" tabindex="-1"></a><span class="co">#&gt; 6  2018 June        867 NA                           342        76     170   610</span></span>
<span id="cb56-11"><a href="#cb56-11" tabindex="-1"></a><span class="co">#&gt; 7  2018 July        829 NA                           360       108     183   594</span></span>
<span id="cb56-12"><a href="#cb56-12" tabindex="-1"></a><span class="co">#&gt; 8  2018 August      939 NA                           286        90     205   649</span></span>
<span id="cb56-13"><a href="#cb56-13" tabindex="-1"></a><span class="co">#&gt; 9  2018 Septe…      835 NA                           304       117     175   560</span></span>
<span id="cb56-14"><a href="#cb56-14" tabindex="-1"></a><span class="co">#&gt; # ℹ 1 more variable: West &lt;dbl&gt;</span></span></code></pre></div>
<p>This sort of data is not uncommon from government agencies: the
column names actually belong to different variables, and here we have
summaries for number of units (1, 2-4, 5+) and regions of the country
(NE, NW, midwest, S, W). We can most easily describe that with a
tibble:</p>
<div class="sourceCode" id="cb57"><pre class="sourceCode r"><code class="sourceCode r"><span id="cb57-1"><a href="#cb57-1" tabindex="-1"></a>spec <span class="ot">&lt;-</span> <span class="fu">tribble</span>(</span>
<span id="cb57-2"><a href="#cb57-2" tabindex="-1"></a>  <span class="sc">~</span>.name,            <span class="sc">~</span>.value, <span class="sc">~</span>units,  <span class="sc">~</span>region,     </span>
<span id="cb57-3"><a href="#cb57-3" tabindex="-1"></a>  <span class="st">&quot;1 unit&quot;</span>,          <span class="st">&quot;n&quot;</span>,     <span class="st">&quot;1&quot;</span>,     <span class="cn">NA</span>,          </span>
<span id="cb57-4"><a href="#cb57-4" tabindex="-1"></a>  <span class="st">&quot;2 to 4 units&quot;</span>,    <span class="st">&quot;n&quot;</span>,     <span class="st">&quot;2-4&quot;</span>,   <span class="cn">NA</span>,          </span>
<span id="cb57-5"><a href="#cb57-5" tabindex="-1"></a>  <span class="st">&quot;5 units or more&quot;</span>, <span class="st">&quot;n&quot;</span>,     <span class="st">&quot;5+&quot;</span>,    <span class="cn">NA</span>,          </span>
<span id="cb57-6"><a href="#cb57-6" tabindex="-1"></a>  <span class="st">&quot;Northeast&quot;</span>,       <span class="st">&quot;n&quot;</span>,     <span class="cn">NA</span>,      <span class="st">&quot;Northeast&quot;</span>, </span>
<span id="cb57-7"><a href="#cb57-7" tabindex="-1"></a>  <span class="st">&quot;Midwest&quot;</span>,         <span class="st">&quot;n&quot;</span>,     <span class="cn">NA</span>,      <span class="st">&quot;Midwest&quot;</span>,   </span>
<span id="cb57-8"><a href="#cb57-8" tabindex="-1"></a>  <span class="st">&quot;South&quot;</span>,           <span class="st">&quot;n&quot;</span>,     <span class="cn">NA</span>,      <span class="st">&quot;South&quot;</span>,     </span>
<span id="cb57-9"><a href="#cb57-9" tabindex="-1"></a>  <span class="st">&quot;West&quot;</span>,            <span class="st">&quot;n&quot;</span>,     <span class="cn">NA</span>,      <span class="st">&quot;West&quot;</span>,      </span>
<span id="cb57-10"><a href="#cb57-10" tabindex="-1"></a>)</span></code></pre></div>
<p>Which yields the following longer form:</p>
<div class="sourceCode" id="cb58"><pre class="sourceCode r"><code class="sourceCode r"><span id="cb58-1"><a href="#cb58-1" tabindex="-1"></a>construction <span class="sc">%&gt;%</span> <span class="fu">pivot_longer_spec</span>(spec)</span>
<span id="cb58-2"><a href="#cb58-2" tabindex="-1"></a><span class="co">#&gt; # A tibble: 63 × 5</span></span>
<span id="cb58-3"><a href="#cb58-3" tabindex="-1"></a><span class="co">#&gt;     Year Month    units region        n</span></span>
<span id="cb58-4"><a href="#cb58-4" tabindex="-1"></a><span class="co">#&gt;    &lt;dbl&gt; &lt;chr&gt;    &lt;chr&gt; &lt;chr&gt;     &lt;dbl&gt;</span></span>
<span id="cb58-5"><a href="#cb58-5" tabindex="-1"></a><span class="co">#&gt;  1  2018 January  1     &lt;NA&gt;        859</span></span>
<span id="cb58-6"><a href="#cb58-6" tabindex="-1"></a><span class="co">#&gt;  2  2018 January  2-4   &lt;NA&gt;         NA</span></span>
<span id="cb58-7"><a href="#cb58-7" tabindex="-1"></a><span class="co">#&gt;  3  2018 January  5+    &lt;NA&gt;        348</span></span>
<span id="cb58-8"><a href="#cb58-8" tabindex="-1"></a><span class="co">#&gt;  4  2018 January  &lt;NA&gt;  Northeast   114</span></span>
<span id="cb58-9"><a href="#cb58-9" tabindex="-1"></a><span class="co">#&gt;  5  2018 January  &lt;NA&gt;  Midwest     169</span></span>
<span id="cb58-10"><a href="#cb58-10" tabindex="-1"></a><span class="co">#&gt;  6  2018 January  &lt;NA&gt;  South       596</span></span>
<span id="cb58-11"><a href="#cb58-11" tabindex="-1"></a><span class="co">#&gt;  7  2018 January  &lt;NA&gt;  West        339</span></span>
<span id="cb58-12"><a href="#cb58-12" tabindex="-1"></a><span class="co">#&gt;  8  2018 February 1     &lt;NA&gt;        882</span></span>
<span id="cb58-13"><a href="#cb58-13" tabindex="-1"></a><span class="co">#&gt;  9  2018 February 2-4   &lt;NA&gt;         NA</span></span>
<span id="cb58-14"><a href="#cb58-14" tabindex="-1"></a><span class="co">#&gt; 10  2018 February 5+    &lt;NA&gt;        400</span></span>
<span id="cb58-15"><a href="#cb58-15" tabindex="-1"></a><span class="co">#&gt; # ℹ 53 more rows</span></span></code></pre></div>
<p>Note that there is no overlap between the <code>units</code> and
<code>region</code> variables; here the data would really be most
naturally described in two independent tables.</p>
</div>
<div id="theory" class="section level3">
<h3>Theory</h3>
<p>One neat property of the <code>spec</code> is that you need the same
spec for <code>pivot_longer()</code> and <code>pivot_wider()</code>.
This makes it very clear that the two operations are symmetric:</p>
<div class="sourceCode" id="cb59"><pre class="sourceCode r"><code class="sourceCode r"><span id="cb59-1"><a href="#cb59-1" tabindex="-1"></a>construction <span class="sc">%&gt;%</span> </span>
<span id="cb59-2"><a href="#cb59-2" tabindex="-1"></a>  <span class="fu">pivot_longer_spec</span>(spec) <span class="sc">%&gt;%</span> </span>
<span id="cb59-3"><a href="#cb59-3" tabindex="-1"></a>  <span class="fu">pivot_wider_spec</span>(spec)</span>
<span id="cb59-4"><a href="#cb59-4" tabindex="-1"></a><span class="co">#&gt; # A tibble: 9 × 9</span></span>
<span id="cb59-5"><a href="#cb59-5" tabindex="-1"></a><span class="co">#&gt;    Year Month  `1 unit` `2 to 4 units` `5 units or more` Northeast Midwest South</span></span>
<span id="cb59-6"><a href="#cb59-6" tabindex="-1"></a><span class="co">#&gt;   &lt;dbl&gt; &lt;chr&gt;     &lt;dbl&gt;          &lt;dbl&gt;             &lt;dbl&gt;     &lt;dbl&gt;   &lt;dbl&gt; &lt;dbl&gt;</span></span>
<span id="cb59-7"><a href="#cb59-7" tabindex="-1"></a><span class="co">#&gt; 1  2018 Janua…      859             NA               348       114     169   596</span></span>
<span id="cb59-8"><a href="#cb59-8" tabindex="-1"></a><span class="co">#&gt; 2  2018 Febru…      882             NA               400       138     160   655</span></span>
<span id="cb59-9"><a href="#cb59-9" tabindex="-1"></a><span class="co">#&gt; 3  2018 March       862             NA               356       150     154   595</span></span>
<span id="cb59-10"><a href="#cb59-10" tabindex="-1"></a><span class="co">#&gt; 4  2018 April       797             NA               447       144     196   613</span></span>
<span id="cb59-11"><a href="#cb59-11" tabindex="-1"></a><span class="co">#&gt; 5  2018 May         875             NA               364        90     169   673</span></span>
<span id="cb59-12"><a href="#cb59-12" tabindex="-1"></a><span class="co">#&gt; 6  2018 June        867             NA               342        76     170   610</span></span>
<span id="cb59-13"><a href="#cb59-13" tabindex="-1"></a><span class="co">#&gt; 7  2018 July        829             NA               360       108     183   594</span></span>
<span id="cb59-14"><a href="#cb59-14" tabindex="-1"></a><span class="co">#&gt; 8  2018 August      939             NA               286        90     205   649</span></span>
<span id="cb59-15"><a href="#cb59-15" tabindex="-1"></a><span class="co">#&gt; 9  2018 Septe…      835             NA               304       117     175   560</span></span>
<span id="cb59-16"><a href="#cb59-16" tabindex="-1"></a><span class="co">#&gt; # ℹ 1 more variable: West &lt;dbl&gt;</span></span></code></pre></div>
<p>The pivoting spec allows us to be more precise about exactly how
<code>pivot_longer(df, spec = spec)</code> changes the shape of
<code>df</code>: it will have <code>nrow(df) * nrow(spec)</code> rows,
and <code>ncol(df) - nrow(spec) + ncol(spec) - 2</code> columns.</p>
</div>
</div>



<!-- code folding -->


<!-- dynamically load mathjax for compatibility with self-contained -->
<script>
  (function () {
    var script = document.createElement("script");
    script.type = "text/javascript";
    script.src  = "https://mathjax.rstudio.com/latest/MathJax.js?config=TeX-AMS-MML_HTMLorMML";
    document.getElementsByTagName("head")[0].appendChild(script);
  })();
</script>

</body>
</html>