File: helpers-pattern.R

package info (click to toggle)
r-cran-tidyselect 1.1.0%2Bdfsg-1
  • links: PTS, VCS
  • area: main
  • in suites: bullseye
  • size: 556 kB
  • sloc: sh: 13; makefile: 2
file content (191 lines) | stat: -rw-r--r-- 5,194 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
#' Select variables that match a pattern
#'
#' @description
#'
#' These [selection helpers][language] match variables according
#' to a given pattern.
#'
#' * [starts_with()]: Starts with a prefix.
#' * [ends_with()]: Ends with a suffix.
#' * [contains()]: Contains a literal string.
#' * [matches()]: Matches a regular expression.
#' * [num_range()]: Matches a numerical range like x01, x02, x03.
#'
#' @param match A character vector. If length > 1, the union of the
#'   matches is taken.
#' @param ignore.case If `TRUE`, the default, ignores case when matching
#'   names.
#' @param vars A character vector of variable names. If not supplied,
#'   the variables are taken from the current selection context (as
#'   established by functions like `select()` or `pivot_longer()`).
#'
#' @section Examples:
#'
#' ```{r, child = "man/rmd/setup.Rmd"}
#' ```
#'
#' Selection helpers can be used in functions like `dplyr::select()`
#' or `tidyr::pivot_longer()`. Let's first attach the tidyverse:
#'
#' ```{r, comment = "#>", collapse = TRUE}
#' library(tidyverse)
#'
#' # For better printing
#' iris <- as_tibble(iris)
#' ```
#'
#' `starts_with()` selects all variables matching a prefix and
#' `ends_with()` matches a suffix:
#'
#' ```{r, comment = "#>", collapse = TRUE}
#' iris %>% select(starts_with("Sepal"))
#'
#' iris %>% select(ends_with("Width"))
#' ```
#'
#' You can supply multiple prefixes or suffixes. Note how the order of
#' variables depends on the order of the suffixes and prefixes:
#'
#' ```{r, comment = "#>", collapse = TRUE}
#' iris %>% select(starts_with(c("Petal", "Sepal")))
#'
#' iris %>% select(ends_with(c("Width", "Length")))
#' ```
#'
#' `contains()` selects columns whose names contain a word:
#'
#' ```{r, comment = "#>", collapse = TRUE}
#' iris %>% select(contains("al"))
#' ```
#'
#' These helpers do not use regular expressions. To select with a
#' regexp use `matches()`
#'
#' ```{r, comment = "#>", collapse = TRUE}
#' # [pt] is matched literally:
#' iris %>% select(contains("[pt]al"))
#'
#' # [pt] is interpreted as a regular expression
#' iris %>% select(matches("[pt]al"))
#' ```
#'
#' `starts_with()` selects all variables starting with a prefix. To
#' select a range, use `num_range()`. Compare:
#'
#' ```{r, comment = "#>", collapse = TRUE}
#' billboard %>% select(starts_with("wk"))
#'
#' billboard %>% select(num_range("wk", 10:15))
#' ```
#'
#' @seealso `r rd_helpers_seealso()`
#' @export
starts_with <- function(match,
                        ignore.case = TRUE,
                        vars = NULL) {
  check_match(match)
  vars <- vars %||% peek_vars(fn = "starts_with")

  if (ignore.case) {
     vars <- tolower(vars)
     match <- tolower(match)
  }

  flat_map_int(match, starts_with_impl, vars)
}
starts_with_impl <- function(x, vars) {
  n <- nchar(x)
  which_vars(x, substr(vars, 1, n))
}

#' @rdname starts_with
#' @export
ends_with <- function(match,
                      ignore.case = TRUE,
                      vars = NULL) {
  check_match(match)
  vars <- vars %||% peek_vars(fn = "ends_with")

  if (ignore.case) {
    vars <- tolower(vars)
    match <- tolower(match)
  }

  length <- nchar(vars)
  flat_map_int(match, ends_with_impl, vars, length)
}
ends_with_impl <- function(x, vars, length) {
  n <- nchar(x)
  which_vars(x, substr(vars, pmax(1, length - n + 1), length))
}

#' @rdname starts_with
#' @export
contains <- function(match,
                     ignore.case = TRUE,
                     vars = NULL) {
  check_match(match)
  vars <- vars %||% peek_vars(fn = "contains")

  if (ignore.case) {
    vars <- tolower(vars)
    match <- tolower(match)
  }

  flat_map_int(match, grep_vars, vars, fixed = TRUE)
}

#' @rdname starts_with
#' @param perl Should Perl-compatible regexps be used?
#' @export
matches <- function(match,
                    ignore.case = TRUE,
                    perl = FALSE,
                    vars = NULL) {
  check_match(match)
  vars <- vars %||% peek_vars(fn = "matches")
  flat_map_int(match, grep_vars, vars, ignore.case = ignore.case, perl = perl)
}

#' @rdname starts_with
#' @param prefix A prefix that starts the numeric range.
#' @param range A sequence of integers, like `1:5`.
#' @param width Optionally, the "width" of the numeric range. For example,
#'   a range of 2 gives "01", a range of three "001", etc.
#' @export
num_range <- function(prefix,
                      range,
                      width = NULL,
                      vars = NULL) {
  vars <- vars %||% peek_vars(fn = "num_range")

  if (!is_null(width)) {
    range <- sprintf(paste0("%0", width, "d"), range)
  }

  match_vars(paste0(prefix, range), vars)
}

check_match <- function(match) {
  if (!is_character(match) || !all(nzchar(match))) {
    abort("`match` must be a character vector of non empty strings.")
  }
}

match_vars <- function(needle, haystack) {
  if (vctrs::vec_duplicate_any(haystack)) {
    x <- map(needle, ~ which(. == haystack))
    x <- vctrs::vec_c(!!!x)
  } else {
    x <- match(needle, haystack)
    x[!is.na(x)]
  }
}

grep_vars <- function(needle, haystack, ...) {
  grep(needle, haystack, ...)
}

which_vars <- function(needle, haystack) {
  which(needle == haystack)
}