1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420
|
---
title: "Implementing tidyselect interfaces"
output: rmarkdown::html_vignette
vignette: >
%\VignetteIndexEntry{Implementing tidyselect interfaces}
%\VignetteEngine{knitr::rmarkdown}
%\VignetteEncoding{UTF-8}
---
```{r, include = FALSE}
knitr::opts_chunk$set(
collapse = TRUE,
comment = "#>"
)
```
```{r setup}
library(tidyselect)
library(magrittr)
```
```{r, include = FALSE}
# For better printing
mtcars <- tibble::as_tibble(mtcars)
iris <- tibble::as_tibble(iris)
options(
tibble.print_min = 4,
tibble.print_max = 4
)
```
tidyselect implements a specialised sublanguage of R for selecting
variables from data frames and other data structures. A technical
description of the DSL is available in the [syntax
vignette](https://tidyselect.r-lib.org/articles/syntax.html).
In this vignette, we describe how to include tidyselect in your own
packages. If you just want to know how to use tidyselect syntax in
dplyr or tidyr, please read `?language` instead.
## Before we start
### Selections as dots or as named arguments
There are two major ways of designing a function that takes
selections.
- Passing __dots__ as in `dplyr::select()`.
```{r, eval = FALSE}
mtcars %>% dplyr::select(mpg, cyl)
```
- Interpolating __named arguments__ as in `tidyr::pivot_longer()`. In
this case, multiple inputs can be provided inside `c()` or by using
boolean operators:
```{r, eval = FALSE}
mtcars %>% pivot_longer(c(mpg, cyl))
mtcars %>% pivot_longer(mpg | cyl)
```
Our general recommendation is to take dots when the main purpose of
the function is to create a new data structure based on a selection.
When the selection is accessory to the main purpose of the function,
take it as a named argument. In doubt, we recommend using named
arguments because it is easier to change a named argument to dots than
the other way around. For more advice about this, see the [Making data
with `...`](https://design.tidyverse.org/dots-data.html) section of
the tidyverse design book.
### Do you need tidyselect?
The tools described in this vignette are rather low level. Depending
on your use case, it may be easier to wrap `dplyr::select()`. You'll
get a data frame containing the columns selected by your user, which
you can then handle in various ways.
The following examples illustrate how you could write a function that
takes a selection of data and returns the corresponding data frame
with capitalised names:
```{r, eval = FALSE}
# Passing dots
toupper_dots <- function(data, ...) {
sel <- dplyr::select(data, ...)
rlang::set_names(sel, toupper)
}
# Interpolating a named argument with {{ }}
toupper_arg <- function(data, arg) {
sel <- dplyr::select(data, {{ arg }})
rlang::set_names(sel, toupper)
}
mtcars %>% toupper_dots(mpg:disp, vs)
#> # A tibble: 32 x 4
#> MPG CYL DISP VS
#> <dbl> <dbl> <dbl> <dbl>
#> 1 21 6 160 0
#> 2 21 6 160 0
#> 3 22.8 4 108 1
#> 4 21.4 6 258 1
#> # … with 28 more rows
mtcars %>% toupper_arg(c(mpg:disp, vs))
#> # A tibble: 32 x 4
#> MPG CYL DISP VS
#> <dbl> <dbl> <dbl> <dbl>
#> 1 21 6 160 0
#> 2 21 6 160 0
#> 3 22.8 4 108 1
#> 4 21.4 6 258 1
#> # … with 28 more rows
```
The main advantage of the lower level tidyselect tools is that they
offer a bit more information and flexibility. Instead of returning the
selected data, they return the __locations__ of selected elements
inside the input data. If you don't need the selected locations and
can afford the dependency, you may consider wrapping dplyr instead.
## The selection evaluators
tidyselect is implemented with non-standard evaluation (NSE). This
unique feature of the R language refers to the ability of functions to
__defuse__ (i.e. delay the execution) some or all of their arguments,
and resume evaluation later on[^1]. Crucially, evaluation can be
resumed in a different context or according to different rules, which
is often how domain-specific languages are created in R.
[^1]: The defusing step is also known as _quoting_.
### Defusing and resuming evaluation of R code
When a function argument is defused, R halts the evaluation of the
code and returns a defused expression instead. This expression
contains the code that describes how to compute the intended value.
Defuse _your own_ R code with `expr()`:
```{r}
own <- rlang::expr(1 + 2)
own
```
Defuse _the user's_ R code with `enquo()`:
```{r}
fn <- function(arg) {
expr <- rlang::enquo(arg)
expr
}
user <- fn(1 + 2)
user
```
To resume the evaluation of the defused R code, use `eval_tidy()`:
```{r}
rlang::eval_tidy(own)
rlang::eval_tidy(user)
```
You can resume the evaluation in data context by passing a data frame
as `data` argument:
```{r}
with_data <- function(data, x) {
expr <- rlang::enquo(x)
rlang::eval_tidy(expr, data = data)
}
```
Resuming evaluation in a data context is known as __data masking__.
The data-vars inside the data frame are combined with the env-vars of
the environment, making it possible for users to refer to their data
variables:
```{r, error = TRUE}
NULL %>% with_data(mean(cyl) * 10)
mtcars %>% with_data(mean(cyl) * 10)
```
### Resuming defused R code with tidyselect rules
Taking tidyselect selections in your functions follows the same
principles. First defuse an expression, then resume its evaluation.
Instead of `eval_tidy()`, we need the special interpreters
`eval_select()` and `eval_rename()`. Like `eval_tidy()`, they take a
defused expression and some data. They return a vector of locations
for the selected elements:
```{r}
eval_select(rlang::expr(mpg), mtcars)
eval_select(rlang::expr(c(mpg:disp, vs)), mtcars)
```
If the user has renamed some of the selected elements, the names of
the vector of locations reflect the new names.
```{r}
eval_select(rlang::expr(c(foo = mpg, bar = disp)), mtcars)
eval_rename(rlang::expr(c(foo = mpg, bar = disp)), mtcars)
```
`eval_select()` is most likely the variant that you'll need to
implement your tidyselect functions.
#### Simple selections with dots
If your selecting function takes dots:
1. Pass the dots to `c()` inside a defused expression.
2. Resume evaluation of the defused `c()` expression with
`eval_select()`.
3. Use the vector of locations returned by `eval_select()` to subset
and rename the input data.
Here is how to reimplement `dplyr::select()` in 3 lines representing
each of the steps above:
```{r}
select <- function(.data, ...) {
expr <- rlang::expr(c(...))
pos <- eval_select(expr, data = .data)
rlang::set_names(.data[pos], names(pos))
}
mtcars %>%
select(mpg, cyl)
```
#### Simple selections with named arguments
If your selecting function takes named arguments, the defusing step is
a bit different. We need to use `enquo()` to defuse the function
argument itself.
```{r}
select <- function(.data, cols) {
expr <- rlang::enquo(cols)
pos <- eval_select(expr, data = .data)
rlang::set_names(.data[pos], names(pos))
}
mtcars %>%
select(c(mpg, cyl))
```
#### Renaming selections
The `eval_rename()` variant is rarely needed and only mentioned here
for completeness. First note that both `eval_select()` and
`eval_rename()` allow renaming variables:
```{r}
eval_select(rlang::expr(c(foo = mpg)), mtcars)
eval_rename(rlang::expr(c(foo = mpg)), mtcars)
```
`eval_rename()` is very similar to `eval_select()` but it has more
constraints because it is meant for renaming variables in place. In
particular it throws an error if the selected inputs are unnamed. In
practice, `eval_rename()` only accepts a `c()` expression as `expr`
argument, and all inputs inside the outermost `c()` must be named:
```{r, error = TRUE}
eval_rename(rlang::expr(mpg), mtcars)
eval_rename(rlang::expr(c(mpg)), mtcars)
eval_rename(rlang::expr(c(foo = mpg)), mtcars)
```
Because of this constraint, it doesn't make much sense to take a named
argument, most of the time you'll want to pass dots to a defused `c()`
expression. This way the user can easily pass names with the
selections:
```{r}
wrapper <- function(data, ...) {
eval_rename(rlang::expr(c(...)), data)
}
mtcars %>% wrapper(foo = mpg, bar = hp:wt)
```
As an example of how to use the vector of locations returned by
`eval_rename()`, here is how to implement `dplyr::rename()`:
```{r}
rename <- function(.data, ...) {
pos <- eval_rename(rlang::expr(c(...)), .data)
names(.data)[pos] <- names(pos)
.data
}
mtcars %>%
rename(foo = mpg, bar = hp:wt)
```
## Creating selection helpers
Tools like `starts_with()` or `contains()` are called __selection
helpers__. These tools inspect the variable names currently available
for selection with `peek_vars()`. The variable names are registered
automatically by `eval_select()` for the duration of the evaluation:
```{r}
x <- rlang::expr(print(peek_vars()))
invisible(eval_select(x, data = mtcars))
```
Such properties temporarily available by calling a function like
`peek_vars()` are called __descriptors__. Descriptors are useful
because they are very easy to compose. For instance, a user could
combine `starts_with()` and `ends_with()` without having to worry
about passing the variables or the environment in which they can be
found:
```{r}
my_selector <- function(prefix, suffix) {
intersect(
starts_with(prefix),
ends_with(suffix)
)
}
iris %>% select(my_selector("Sepal", "Length"))
```
To create a new selection helper:
1. Inspect the variables with `peek_vars()`. By convention this should
be done in an argument that the user can override.
2. Return one of the supported data types: vector of names or
locations (the latter is recommended, see section on handling
duplicate variables), or a predicate function.
```{r}
if_width <- function(n, vars = peek_vars(fn = "if_width")) {
vars[nchar(vars) == n]
}
mtcars %>% select(if_width(2))
```
The `fn` argument makes the error message more informative when the
helper is used in the wrong context:
```{r, error = TRUE}
mtcars[if_width(2)]
```
Because the variables are inspected in a default argument, it is easy
to override. This is mostly useful in unit tests:
```{r}
if_width(2, vars = names(mtcars))
```
### Handling duplicate variables
However our current implementation of `if_width()` has a design
flaw. It doesn't work properly when the input has duplicate names:
```{r}
dups <- vctrs::new_data_frame(list(foo = 1, quux = 2, foo = 3))
dups %>% select(if_width(3))
```
Supporting duplicates is recommended because data frames in the wild
don't always have unique names. Also, tidyselect can be used with
vectors that don't require unique names, and it might be extended to
allow recoding character vectors in the future. In these cases,
handling duplicates is part of the normal usage for selection helpers.
To support duplicates it is recommended to return vectors of locations
from selection helpers rather than vector of names. Fixing `if_width()`
is easy:
```{r}
if_width <- function(n, vars = peek_vars(fn = "if_width")) {
which(nchar(vars) == n)
}
```
If the input is a data frame, the user is now informed that their
selection should not contain duplicates:
```{r, error = TRUE}
dups %>% select(if_width(3))
```
And all the duplicates are selected if the input is not a data frame,
as expected:
```{r}
as.list(dups) %>% select(if_width(3))
```
|