1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140
|
\name{orderColnames}
\alias{orderColnames}
\alias{sortColnames}
\alias{sampleColnames}
\alias{statsColnames}
\alias{pcaColnames}
\alias{hclustColnames}
\title{Reorder column names of a time series}
\description{
Functions and methods dealing with the rearrangement
of column names of 'timeSeries' objects.
\cr
\tabular{ll}{
\code{orderColnames} \tab Returns ordered column names of a time Series, \cr
\code{sortColnames} \tab Returns sorted column names of a time Series, \cr
\code{sampleColnames} \tab Returns sampled column names of a time Series, \cr
\code{statsColnames} \tab Returns statistically rearranged column names, \cr
\code{pcaColnames} \tab Returns PCA correlation ordered column names, \cr
\code{hclustColnames} \tab Returns hierarchical clustered column names. }
}
\usage{
orderColnames(x, \dots)
sortColnames(x, \dots)
sampleColnames(x, \dots)
statsColnames(x, FUN = colMeans, \dots)
pcaColnames(x, robust = FALSE, \dots)
hclustColnames(x, method = c("euclidean", "complete"), \dots)
}
\arguments{
\item{x}{
an object of class \code{timesSeries} or any other rectangular
object which can be transformed by the function \code{as.matrix}
into a numeric matrix.
}
\item{FUN}{
a character string indicating which statistical function should be
applied. By default statistical ordering operates on the column
means of the time series.
}
\item{method}{
a character string with two elements. The first determines the
choice of the distance measure, see \code{\link[stats]{dist}}, and
the second determines the choice of the agglomeration method, see
\code{\link[stats]{hclust}}.
}
\item{robust}{
a logical flag which indicates if robust correlations should be
used.
}
\item{\dots}{
further arguments to be passed to the underlying functions doing the
main work, see section \sQuote{Details}.
}
}
\details{
These functions reorder the column names of a \code{"timeSeries"}
object according to some statistical measure.
\bold{Statistically Motivated Rearrangement}
The function \code{statsColnames} rearranges the column names
according to a statical measure. These measure must operate on the
columns of the time series and return a vector of values which can
be sorted. Typical functions ar those listed in help page
\code{colStats} but custom functions can be used that compute for
example risk or any other statistical measure. The \code{\dots}
argument allows to pass additional arguments to the underlying
function \code{FUN}.
\bold{PCA Ordering of the Correlation Matrix}
The function \code{pcaColnames} rearranges the column names
according to the PCA ordered correlation matrix. The argument
\code{robust} allsows to select between the use of the standard
\code{cor} and computation of robust correlations using
the function \code{covMcd} from contributed R package
\code{robustbase}. The \code{\dots} argument allows to pass
additional arguments to the two underlying functions \code{cor}
or \code{covMcd}. E.g., adding \code{method="kendall"}
to the argument list calculates Kendall's rank correlations
instead the default which calculates Person's correlations.\cr
\bold{Ordering by Hierarchical Clustering}
The function \code{pcaColnames} uses the hierarchical clustering
approach \code{hclust} to rearrange the column names of the
time series.
}
\value{
for \code{orderColnames}, an integer vector representing the
permutaion that will sort the column names,
for the other functions, a character vector giving the rearranged
column names
}
\examples{
## Load Swiss Pension Fund Benchmark Data -
data <- LPP2005REC[,1:6]
## Abbreviate Column Names -
colnames(data)
## Sort Alphabetically -
sortColnames(data)
## Sort by Column Names by Hierarchical Clustering -
hclustColnames(data)
head(data[, hclustColnames(data)])
}
\keyword{chron}
|