1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233
|
# Expectation and covariance matrix computation
# based on the algorithms by Lee (1979), Lee (1983), Leppard and Tallis (1989)
# and Manjunath and Wilhelm (2009)
#
# References:
# Amemiya (1973) : Regression Analysis When the Dependent Variable is Truncated Normal
# Amemiya (1974) : Multivariate Regression and Simultaneous Equations Models When the Dependent Variables Are Truncated Normal
# Lee (1979) : On the first and second moments of the truncated multi-normal distribution and a simple estimator
# Lee (1983) : The Determination of Moments of the Doubly Truncated Multivariate Tobit Model
# Leppard and Tallis (1989) : Evaluation of the Mean and Covariance of the Truncated Multinormal
# Manjunath B G and Stefan Wilhelm (2009):
# Moments Calculation for the Doubly Truncated Multivariate Normal Distribution
# Johnson/Kotz (1972)
# Compute truncated mean and truncated variance in the case
# where only a subset of k < n x_1,..,x_k variables are truncated.
# In this case, computations simplify and we only have to deal with k-dimensions.
# Example: n=10 variables but only k=3 variables are truncated.
#
# Attention: Johnson/Kotz (1972), p.70 only works for zero mean vector!
# We have to demean all variables first
JohnsonKotzFormula <- function(mean = rep(0, nrow(sigma)), sigma = diag(length(mean)),
lower = rep(-Inf, length = length(mean)),
upper = rep( Inf, length = length(mean))) {
# determine which variables are truncated
idx <- which(!is.infinite(lower) | !is.infinite(upper)) # index of truncated variables
n <- length(mean)
k <- length(idx) # number of truncated variables
if (k >= n) stop(sprintf("Number of truncated variables (%s) must be lower than total number of variables (%s).", k, n))
if (k == 0) {
return(list(tmean=mean, tvar=sigma)) # no truncation
}
# transform to zero mean first
lower <- lower - mean
upper <- upper - mean
# partitionining of sigma
# sigma = [ V11 V12 ]
# [ V21 V22 ]
V11 <- sigma[idx,idx]
V12 <- sigma[idx,-idx]
V21 <- sigma[-idx,idx]
V22 <- sigma[-idx,-idx]
# determine truncated mean xi and truncated variance U11
r <- mtmvnorm(mean=rep(0, k), sigma=V11, lower=lower[idx], upper=upper[idx])
xi <- r$tmean
U11 <- r$tvar
invV11 <- solve(V11) # V11^(-1)
# See Johnson/Kotz (1972), p.70 formula
tmean <- numeric(n)
tmean[idx] <- xi
tmean[-idx] <- xi %*% invV11 %*% V12
tvar <- matrix(NA, n, n)
tvar[idx, idx] <- U11
tvar[idx, -idx] <- U11 %*% invV11 %*% V12
tvar[-idx, idx] <- V21 %*% invV11 %*% U11
tvar[-idx, -idx] <- V22 - V21 %*% (invV11 - invV11 %*% U11 %*% invV11) %*% V12
tmean <- tmean + mean
return(list(tmean=tmean, tvar=tvar))
}
# Mean and Covariance of the truncated multivariate distribution (double truncation, general sigma, general mean)
#
# @param mean mean vector (k x 1)
# @param sigma covariance matrix (k x k)
# @param lower lower truncation point (k x 1)
# @param upper upper truncation point (k x 1)
# @param doComputeVariance flag whether to compute variance (for performance reasons)
mtmvnorm <- function(mean = rep(0, nrow(sigma)), sigma = diag(length(mean)),
lower = rep(-Inf, length = length(mean)),
upper = rep( Inf, length = length(mean)),
doComputeVariance=TRUE,
pmvnorm.algorithm=GenzBretz())
{
N <- length(mean)
# Check input parameters
cargs <- checkTmvArgs(mean, sigma, lower, upper)
mean <- cargs$mean
sigma <- cargs$sigma
lower <- cargs$lower
upper <- cargs$upper
# check number of truncated variables; if only a subset of variables is truncated
# we can use the Johnson/Kotz formula together with mtmvnorm()
# determine which variables are truncated
idx <- which(!is.infinite(lower) | !is.infinite(upper)) # index of truncated variables
k <- length(idx) # number of truncated variables
if (k < N) {
return(JohnsonKotzFormula(mean=mean, sigma=sigma, lower=lower, upper=upper))
}
# Truncated Mean
TMEAN <- numeric(N)
# Truncated Covariance matrix
TVAR <- matrix(NA, N, N)
# Verschiebe die Integrationsgrenzen um -mean, damit der Mittelwert 0 wird
a <- lower - mean
b <- upper - mean
lower <- lower - mean
upper <- upper - mean
# eindimensionale Randdichte
F_a <- numeric(N)
F_b <- numeric(N)
zero_mean <- rep(0,N)
# pre-calculate one-dimensial marginals F_a[q] once
for (q in 1:N) {
tmp <- dtmvnorm.marginal(xn=c(a[q],b[q]), n = q, mean=zero_mean, sigma=sigma, lower=lower, upper=upper)
F_a[q] <- tmp[1]
F_b[q] <- tmp[2]
}
# 1. Bestimme E[X_i] = mean + Sigma %*% (F_a - F_b)
TMEAN <- as.vector(sigma %*% (F_a - F_b))
if (doComputeVariance) {
# TODO:
# calculating the bivariate densities is not necessary
# in case of conditional independence.
# calculate bivariate density only on first use and then cache it
# so we can avoid this memory overhead.
F2 <- matrix(0, N, N)
for (q in 1:N) {
for (s in 1:N) {
if (q != s) {
d <- dtmvnorm.marginal2(
xq=c(a[q], b[q], a[q], b[q]),
xr=c(a[s], a[s], b[s], b[s]), q=q, r=s,
mean=zero_mean, sigma=sigma, lower=lower, upper=upper, pmvnorm.algorithm=pmvnorm.algorithm)
F2[q,s] <- (d[1] - d[2]) - (d[3] - d[4])
}
}
}
# 2. Bestimme E[X_i, X_j]
# Check if a[q] = -Inf or b[q]=+Inf, then F_a[q]=F_b[q]=0, but a[q] * F_a[q] = NaN and b[q] * F_b[q] = NaN
F_a_q <- ifelse(is.infinite(a), 0, a * F_a) # n-dimensional vector q=1..N
F_b_q <- ifelse(is.infinite(b), 0, b * F_b) # n-dimensional vector q=1..N
for (i in 1:N) {
for (j in 1:N) {
sum <- 0
for (q in 1:N) {
sum <- sum + sigma[i,q] * sigma[j,q] * (sigma[q,q])^(-1) * (F_a_q[q] - F_b_q[q])
if (j != q) {
sum2 <- 0
for (s in 1:N) {
# this term tt will be zero if the partial correlation coefficient \rho_{js.q} is zero!
# even for s == q will the term be zero, so we do not need s!=q condition here
tt <- (sigma[j,s] - sigma[q,s] * sigma[j,q] * (sigma[q,q])^(-1))
sum2 <- sum2 + tt * F2[q,s]
}
sum2 <- sigma[i, q] * sum2
sum <- sum + sum2
}
} # end for q
TVAR[i, j] <- sigma[i, j] + sum
#general mean case: TVAR[i, j] = mean[j] * TMEAN[i] + mean[i] * TMEAN[j] - mean[i] * mean[j] + sigma[i, j] + sum
}
}
# 3. Bestimme Varianz Cov(X_i, X_j) = E[X_i, X_j] - E[X_i]*E[X_j] fuer (0, sigma)-case
TVAR <- TVAR - TMEAN %*% t(TMEAN)
} else {
TVAR = NA
}
# 4. Rueckverschiebung um +mean fuer (mu, sigma)-case
TMEAN <- TMEAN + mean
return(list(tmean=TMEAN, tvar=TVAR))
}
# Bestimmung von Erwartungswert und Kovarianzmatrix ueber numerische Integration und die eindimensionale Randdichte
# d.h.
# E[X_i] = \int_{a_i}^{b_i}{x_i * f(x_i) d{x_i}}
# Var[x_i] = \int_{a_i}^{b_i}{(x_i-\mu_i)^2 * f(x_i) d{x_i}}
# Cov[x_i,x_j] = \int_{a_i}^{b_i}\int_{a_j}^{b_j}{(x_i-\mu_i)(x_j-\mu_j) * f(x_i,x_j) d{x_i}d{x_j}}
#
# Die Bestimmung von E[X_i] und Var[x_i]
# Die Bestimmung der Kovarianz Cov[x_i,x_j] benoetigt die zweidimensionale Randdichte.
#
#
# @param mean Mittelwertvektor (k x 1)
# @param sigma Kovarianzmatrix (k x k)
# @param lower, upper obere und untere Trunkierungspunkte (k x 1)
mtmvnorm.quadrature <- function(mean = rep(0, nrow(sigma)), sigma = diag(length(mean)), lower = rep(-Inf, length = length(mean)), upper = rep( Inf, length = length(mean)))
{
k = length(mean)
# Bestimmung des Erwartungswerts/Varianz ?ber numerische Integration
expectation <- function(x, n=1)
{
x * dtmvnorm.marginal(x, n=n, mean=mean, sigma=sigma, lower=lower, upper=upper)
}
variance <- function(x, n=1)
{
(x - m.integration[n])^2 * dtmvnorm.marginal(x, n=n, mean=mean, sigma=sigma, lower=lower, upper=upper)
}
# Determine expectation from one-dimensional marginal distribution using integration
# i=1..k
m.integration<-numeric(k)
for (i in 1:k)
{
m.integration[i] <- integrate(expectation, lower[i], upper[i], n=i)$value
}
# Determine variances from one-dimensional marginal distribution using integration
# i=1..k
v.integration<-numeric(k)
for (i in 1:k)
{
v.integration[i] <- integrate(variance, lower[i], upper[i], n=i)$value
}
return(list(m=m.integration, v=v.integration))
}
|