1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290
|
# estimation methods for the parameters of the truncated multivariate normal distribution
#
# Literatur:
#
# Amemiya (1974) : Instrumental Variables estimator
# Lee (1979)
# Lee (1983)
# Griffiths (2002) :
# "Gibbs Sampler for the parameters of the truncated multivariate normal distribution"
#
# Stefan Wilhelm, wilhelm@financial.com
#library(tmvtnorm)
library(stats4)
# Hilfsfunktion : VECH() Operator
vech=function (x)
{
# PURPOSE: creates a column vector by stacking columns of x
# on and below the diagonal
#----------------------------------------------------------
# USAGE: v = vech(x)
# where: x = an input matrix
#---------------------------------------------------------
# RETURNS:
# v = output vector containing stacked columns of x
#----------------------------------------------------------
# Written by Mike Cliff, UNC Finance mcliff@unc.edu
# CREATED: 12/08/98
#if(!is.matrix(x))
#{
#
#}
rows = nrow(x)
columns = ncol(x);
v = c();
for (i in 1:columns)
{
v = c(v, x[i:rows,i]);
}
v
}
# Hilfsfunktion : Operator fuer Namensgebung sigma_i.j (i <= j), d.h. wie vech(), nur Zeilenweise
vech2 <- function (x)
{
# PURPOSE: creates a column vector by stacking columns of x
# on and below the diagonal
#----------------------------------------------------------
# USAGE: v = vech2(x)
# where: x = an input matrix
#---------------------------------------------------------
# RETURNS:
# v = output vector containing stacked columns of x
#----------------------------------------------------------
# Written by Mike Cliff, UNC Finance mcliff@unc.edu
# CREATED: 12/08/98
rows = nrow(x)
columns = ncol(x);
v = c();
for (i in 1:rows)
{
v = c(v, x[i,i:columns]);
}
v
}
# Hilfsfunktion : Inverser VECH() Operator
inv_vech=function(v)
{
#----------------------------------------------------------
# USAGE: x = inv_vech(v)
# where: v = a vector
#---------------------------------------------------------
# RETURNS:
# x = a symmetric (m x m) matrix containing de-vectorized elements of v
#----------------------------------------------------------
# Anzahl der Zeilen
m = -0.5+sqrt(0.5^2+2*length(v))
x = matrix(0,nrow=m,ncol=m)
if (length(v) != m*(m+1)/2)
{
# error
stop("v must have m*(m+1)/2 elements")
}
for (i in 1:m)
{
#cat("r=",i:m," c=",i,"\n")
x[ i:m, i] = v[((i-1)*(m-(i-2)*0.5)+1) : (i*(m-(i-1)*0.5))]
x[ i, i:m] = v[((i-1)*(m-(i-2)*0.5)+1) : (i*(m-(i-1)*0.5))]
}
x
}
# 1. Maximum-Likelihood-Estimation of mu and sigma when truncation points are known
#
# TODO/Idee: Cholesky-Zerlegung der Kovarianzmatrix als Parametrisierung
#
# @param X data matrix (T x n)
# @param lower, upper truncation points
# @param start list of start values for mu and sigma
# @param fixed a list of fixed parameters
# @param method
# @param cholesky flag, if TRUE, we use the Cholesky decomposition of sigma as parametrization
# @param lower.bounds lower bounds for method "L-BFGS-B"
# @param upper.bounds upper bounds for method "L-BFGS-B"
mle.tmvnorm <- function(X,
lower=rep(-Inf, length = ncol(X)),
upper=rep(+Inf, length = ncol(X)),
start=list(mu=rep(0,ncol(X)), sigma=diag(ncol(X))),
fixed=list(), method="BFGS",
cholesky=FALSE,
lower.bounds=-Inf,
upper.bounds=+Inf,
...)
{
# check of standard tmvtnorm arguments
cargs <- checkTmvArgs(start$mu, start$sigma, lower, upper)
start$mu <- cargs$mean
start$sigma <- cargs$sigma
lower <- cargs$lower
upper <- cargs$upper
# check if we have at least one sample
if (!is.matrix(X) || nrow(X) == 0) {
stop("Data matrix X with at least one row required.")
}
# verify dimensions of x and lower/upper match
n <- length(lower)
if (NCOL(X) != n) {
stop("data matrix X has a non-conforming size. Must have ",length(lower)," columns.")
}
# check if lower <= X <= upper for all rows
ind <- logical(nrow(X))
for (i in 1:nrow(X))
{
ind[i] = all(X[i,] >= lower & X[i,] <= upper)
}
if (!all(ind)) {
stop("some of the data points are not in the region lower <= X <= upper")
}
if ((length(lower.bounds) > 1L || length(upper.bounds) > 1L || lower.bounds[1L] !=
-Inf || upper.bounds[1L] != Inf) && method != "L-BFGS-B") {
warning("bounds can only be used with method L-BFGS-B")
method <- "L-BFGS-B"
}
# parameter vector theta = mu_1,...,mu_n,vech(sigma)
if (cholesky) {
# if cholesky == TRUE use Cholesky decomposition of sigma
# t(chol(sigma)) returns a lower triangular matrix which can be vectorized using vech()
theta <- c(start$mu, vech2(t(chol(start$sigma))))
} else {
theta <- c(start$mu, vech2(start$sigma))
}
# names for mean vector elements : mu_i
nmmu <- paste("mu_",1:n,sep="")
# names for sigma elements : sigma_ij
nmsigma <- paste("sigma_",vech2(outer(1:n,1:n, paste, sep=".")),sep="")
names(theta) <- c(nmmu, nmsigma)
# negative log-likelihood-Funktion dynamisch definiert mit den formals(),
# damit mle() damit arbeiten kann
#
# Eigentlich wollen wir eine Funktion negloglik(theta) mit einem einzigen Parametersvektor theta.
# Die Methode mle() braucht aber eine "named list" der Parameter (z.B. mu_1=0, mu_2=0, sigma_1=2,...) und entsprechend eine
# Funktion negloglik(mu1, mu2, sigma1,...)
# Da wir nicht vorher wissen, wie viele Parameter zu schaetzen sind, definieren wir die formals()
# dynamisch um
#
# @param x dummy/placeholder argument, will be overwritten by formals() with list of skalar parameters
negloglik <- function(x)
{
nf <- names(formals())
# recover parameter vector from named arguments (mu1=...,mu2=...,sigma11,sigma12 etc).
# stack all named arguments to parameter vector theta
theta <- sapply(nf, function(x) {eval(parse(text=x))})
# mean vector herholen
mean <- theta[1:n]
# Matrix fuer sigma bauen
if (cholesky) {
L <- inv_vech(theta[-(1:n)])
L[lower.tri(L, diag=FALSE)] <- 0 # L entspricht jetzt chol(sigma), obere Dreiecksmatrix
sigma <- t(L) %*% L
} else {
sigma <- inv_vech(theta[-(1:n)])
}
# if sigma is not positive definite, return MAXVALUE
if (det(sigma) <= 0 || any(diag(sigma) < 0)) {
return(.Machine$integer.max)
}
# Log-Likelihood
# Wieso hier nur dmvnorm() : Wegen Dichte = Conditional density
f <- -(sum(dmvnorm(X, mean, sigma, log=TRUE)) - nrow(X) * log(pmvnorm(lower=lower, upper=upper, mean=mean, sigma=sigma)))
if (is.infinite(f) || is.na(f)) {
# cat("negloglik=",f," for parameter vector ",theta,"\n")
# "L-BFGS-B" requires a finite function value, other methods can handle infinte values like +Inf
# return a high finite value, e.g. integer.max, so optimize knows this is the wrong place to be
# TODO: check whether to return +Inf or .Machine$integer.max, certain algorithms may prefer +Inf, others a finite value
#return(+Inf)
return(.Machine$integer.max)
}
f
}
formals(negloglik) <- theta
# for method "L-BFGS-B" pass bounds parameter "lower.bounds" and "upper.bounds"
# under names "lower" and "upper"
if ((length(lower.bounds) > 1L || length(upper.bounds) > 1L || lower.bounds[1L] !=
-Inf || upper.bounds[1L] != Inf) && method == "L-BFGS-B") {
mle.fit <- eval.parent(substitute(mle(negloglik, start=as.list(theta), fixed=fixed, method = method, lower=lower.bounds, upper=upper.bounds, ...)))
#mle.call <- substitute(mle(negloglik, start=as.list(theta), fixed=fixed, method = method, lower=lower.bounds, upper=upper.bounds, ...))
#mle.fit <- mle(negloglik, start=as.list(theta), fixed=fixed, method = method, lower=lower.bounds, upper=upper.bounds, ...)
#mle.fit@call <- mle.call
return (mle.fit)
} else {
# we need evaluated arguments in the call for profile(mle.fit)
mle.fit <- eval.parent(substitute(mle(negloglik, start=as.list(theta), fixed=fixed, method = method, ...)))
#mle.call <- substitute(mle(negloglik, start=as.list(theta), fixed=fixed, method = method, ...))
#mle.fit <- mle(negloglik, start=as.list(theta), fixed=fixed, method = method, ...)
#mle.fit@call <- mle.call
return (mle.fit)
}
}
# Beispiel:
if (FALSE) {
lower=c(-1,-1)
upper=c(1, 2)
mu =c(0, 0)
sigma=matrix(c(1, 0.7,
0.7, 2), 2, 2)
# generate random samples
X <- rtmvnorm(n=500, mu, sigma, lower, upper)
method <- "BFGS"
# estimate mu and sigma from random samples
# Standard-Startwerte
mle.fit1 <- mle.tmvnorm(X, lower=lower, upper=upper)
mle.fit1a <- mle.tmvnorm(X, lower=lower, upper=upper, cholesky=TRUE)
mle.fit1b <- mle.tmvnorm(X, lower=lower, upper=upper, method="L-BFGS-B",
lower.bounds=c(-1, -1, 0.001, -Inf, 0.001), upper.bounds=c(2, 2, 2, 2, 3))
Rprof("mle.profile1.out")
mle.profile1 <- profile(mle.fit1, X, method="BFGS", trace=TRUE)
Rprof(NULL)
summaryRprof("mle.profile1.out")
confint(mle.profile1)
par(mfrow=c(2,2))
plot(mle.profile1)
summary(mle.fit1)
logLik(mle.fit1)
vcov(mle.fit1)
#TODO: confint(mle.fit1)
#profile(mle.fit1)
# andere Startwerte, näher am wahren Ergebnis
mle.fit2 <- mle.tmvnorm(x=X, lower=lower, upper=upper, start=list(mu=c(0.1, 0.1),
sigma=matrix(c(1, 0.4, 0.4, 1.8),2,2)))
# --> funktioniert jetzt besser...
summary(mle.fit2)
# andere Startwerte, nimm mean und Kovarianz aus den Daten (stimmt zwar nicht, ist aber sicher
# ein besserer Startwert als 0 und diag(n).
mle.fit3 <- mle.tmvnorm(x=X, lower=lower, upper=upper, start=list(mu=colMeans(X),
sigma=cov(X)))
summary(mle.fit3)
}
|