File: DengueVignette.R

package info (click to toggle)
r-cran-treespace 1.1.3%2Bdfsg-1
  • links: PTS, VCS
  • area: main
  • in suites: buster
  • size: 2,544 kB
  • sloc: cpp: 24; sh: 13; makefile: 2
file content (238 lines) | stat: -rw-r--r-- 9,668 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
## ----setup, echo=FALSE---------------------------------------------------
# set global chunk options: images will be 7x7 inches
knitr::opts_chunk$set(fig.width=7, fig.height=7, fig.path="figs/", cache=FALSE, dpi=96)
options(digits = 4)

## ----load, message=FALSE, warning=FALSE----------------------------------
library("treespace")
library("phangorn")
library("adegenet")

## ----load_BEAST_trees----------------------------------------------------
data(DengueTrees)

## ----sample_BEAST_trees--------------------------------------------------
set.seed(123)
BEASTtrees <- DengueTrees[sample(1:length(DengueTrees),200)]

## ----load_seqs-----------------------------------------------------------
data(DengueSeqs)

## ----make_NJ-------------------------------------------------------------
makeTree <- function(x){
  tree <- nj(dist.dna(x, model = "TN93"))
  tree <- root(tree, resolve.root=TRUE, outgroup="D4Thai63")
  tree
}
DnjRooted <- makeTree(DengueSeqs)
# Note, there is a (small) negative branch length. 
# We set this to 0 to avoid warnings from the phangorn package later:
DnjRooted$edge.length[which(DnjRooted$edge.length < 0)] <- 0
plot(DnjRooted)

## ----make_NJ_boots, results="hide"---------------------------------------
Dnjboots <- boot.phylo(DnjRooted, DengueSeqs, B=100, 
	    	       makeTree, trees=TRUE, rooted=TRUE)
Dnjboots

## ----see_NJ_boots--------------------------------------------------------
plot(DnjRooted)
drawSupportOnEdges(Dnjboots$BP)

## ----make_ML, results="hide", message=FALSE------------------------------
Dfit.ini <- pml(DnjRooted, as.phyDat(DengueSeqs), k=4)
Dfit <- optim.pml(Dfit.ini, optNni=TRUE, optBf=TRUE,
                  optQ=TRUE, optGamma=TRUE, model="GTR")
# root:
DfitTreeRooted <- root(Dfit$tree, resolve.root=TRUE, outgroup="D4Thai63")

## ----view_ML-------------------------------------------------------------
plot(DfitTreeRooted)

## ----make_ML_boots, results="hide"---------------------------------------
# bootstrap supports:
DMLboots <- bootstrap.pml(Dfit, optNni=TRUE)
# root:
DMLbootsrooted <- lapply(DMLboots, function(x) root(x, resolve.root=TRUE, outgroup="D4Thai63"))
class(DMLbootsrooted) <- "multiPhylo"


## ----see_ML_boots--------------------------------------------------------
plotBS(DfitTreeRooted, DMLboots, type="phylogram")

## ----run_treespace-------------------------------------------------------
# collect the trees into a single object of class multiPhylo:
DengueTrees <- c(BEASTtrees, Dnjboots$trees, DMLbootsrooted,
		             DnjRooted, DfitTreeRooted)
class(DengueTrees) <- "multiPhylo"
# add tree names:
names(DengueTrees)[1:200] <- paste0("BEAST",1:200)
names(DengueTrees)[201:300] <- paste0("NJ_boots",1:100)
names(DengueTrees)[301:400] <- paste0("ML_boots",1:100)
names(DengueTrees)[[401]] <- "NJ"
names(DengueTrees)[[402]] <- "ML"
# create vector corresponding to tree inference method:
Dtype <- c(rep("BEAST",200),rep("NJboots",100),rep("MLboots",100),"NJ","ML")

# use treespace to find and project the distances:
Dscape <- treespace(DengueTrees, nf=5)

## ----simple_plot---------------------------------------------------------
# simple plot:
plotGrovesD3(Dscape$pco, groups=Dtype)

## ----make_better_plot----------------------------------------------------
Dcols <- c("#1b9e77","#d95f02","#7570b3")
Dmethod <- c(rep("BEAST",200),rep("NJ",100),rep("ML",100),"NJ","ML")
Dbootstraps <- c(rep("replicates",400),"NJ","ML")
Dhighlight <- c(rep(1,400),2,2)
plotGrovesD3(Dscape$pco, 
             groups=Dmethod, 
             colors=Dcols,
             col_lab="Tree type",
             size_var=Dhighlight,
             size_range = c(100,500),
             size_lab="",
             symbol_var=Dbootstraps,
             symbol_lab="",
             point_opacity=c(rep(0.4,400),1,1), 
             legend_width=80)

## ----make_better_plot_with_labels----------------------------------------
plotGrovesD3(Dscape$pco, 
             groups=Dmethod, 
             treeNames = names(DengueTrees), # add the tree names as labels
             colors=Dcols,
             col_lab="Tree type",
             size_var=Dhighlight,
             size_range = c(100,500),
             size_lab="",
             symbol_var=Dbootstraps,
             symbol_lab="",
             point_opacity=c(rep(0.4,400),1,1), 
             legend_width=80)

## ----make_better_plot_with_tooltips--------------------------------------
plotGrovesD3(Dscape$pco, 
             groups=Dmethod, 
             tooltip_text = names(DengueTrees), # add the tree names as tooltip text
             colors=Dcols,
             col_lab="Tree type",
             size_var=Dhighlight,
             size_range = c(100,500),
             size_lab="",
             symbol_var=Dbootstraps,
             symbol_lab="",
             point_opacity=c(rep(0.4,400),1,1), 
             legend_width=80)

## ----scree_plot----------------------------------------------------------
barplot(Dscape$pco$eig, col="navy")

## ----plot_3D, eval=FALSE-------------------------------------------------
#  library(rgl)
#  Dcols3D <- c(rep(Dcols[[1]],200),rep(Dcols[[2]],100),rep(Dcols[[3]],100),Dcols[[2]],Dcols[[3]])
#  rgl::plot3d(Dscape$pco$li[,1],Dscape$pco$li[,2],Dscape$pco$li[,3],
#         type="s",
#         size=c(rep(1.5,400),3,3),
#         col=Dcols3D,
#         xlab="", ylab="", zlab="")

## ----NJ_and_ML_overlap---------------------------------------------------
# trees with the same topology as the NJ tree:
which(as.matrix(Dscape$D)["NJ",]==0)
# trees with the same topology as the ML tree:
which(as.matrix(Dscape$D)["ML",]==0)

## ----compare_trees_NJ_v_ML-----------------------------------------------
# comparing NJ and ML:
plotTreeDiff(DnjRooted,DfitTreeRooted, use.edge.length=FALSE)
treeDist(DnjRooted,DfitTreeRooted)

## ----compare_trees_NJ_v_ML_recoloured------------------------------------
# comparing NJ and ML:
plotTreeDiff(DnjRooted,DfitTreeRooted, use.edge.length=FALSE, 
             treesFacing = TRUE, colourMethod = "palette", palette = funky)

## ----make_BEAST_median---------------------------------------------------
BEASTmed <- medTree(BEASTtrees)

## ----compare_BEAST_meds--------------------------------------------------
BEASTmed$trees
treeDist(BEASTmed$trees[[1]],BEASTmed$trees[[2]])

## ----save_BEAST_median---------------------------------------------------
BEASTrep <- BEASTmed$trees[[1]]

## ----compare_BEAST_to_other_trees----------------------------------------
# comparing BEAST median and NJ:
plotTreeDiff(BEASTrep,DnjRooted, use.edge.length=FALSE, 
             treesFacing = TRUE, colourMethod = "palette", palette = funky)
treeDist(BEASTrep,DnjRooted)
# comparing BEAST median and ML:
plotTreeDiff(BEASTrep,DfitTreeRooted, use.edge.length=FALSE, 
             treesFacing = TRUE, colourMethod = "palette", palette = funky)
treeDist(BEASTrep,DfitTreeRooted)
# comparing BEAST median to a random BEAST tree:
num <- runif(1,1,200)
randomBEASTtree <- BEASTtrees[[num]]
plotTreeDiff(BEASTrep, randomBEASTtree, use.edge.length=FALSE, 
             treesFacing = TRUE, colourMethod = "palette", palette = funky)
treeDist(BEASTrep,randomBEASTtree)

## ----BEASTtrees----------------------------------------------------------
# load the MCC tree
data(DengueBEASTMCC)
# concatenate with other BEAST trees
BEAST201 <- c(BEASTtrees, DengueBEASTMCC)
# compare using treespace:
BEASTscape <- treespace(BEAST201, nf=5)
# simple plot:
plotGrovesD3(BEASTscape$pco)

## ----BEASTtrees_clusters-------------------------------------------------
# find clusters or 'groves':
BEASTGroves <- findGroves(BEASTscape, nclust=4, clustering = "single")

## ----BEASTtrees_meds-----------------------------------------------------
# find median tree(s) per cluster:
BEASTMeds <- medTree(BEAST201, groups=BEASTGroves$groups)
# for each cluster, select a single median tree to represent it:
BEASTMedTrees <- c(BEASTMeds$`1`$trees[[1]],
                   BEASTMeds$`2`$trees[[1]],
                   BEASTMeds$`3`$trees[[1]],
                   BEASTMeds$`4`$trees[[1]])

## ----BEASTtrees_plot, warning=FALSE--------------------------------------
# extract the numbers from the tree list 'BEASTtrees' which correspond to the median trees: 
BEASTMedTreeNums <-c(which(BEASTGroves$groups==1)[[BEASTMeds$`1`$treenumbers[[1]]]],
                     which(BEASTGroves$groups==2)[[BEASTMeds$`2`$treenumbers[[1]]]],
                     which(BEASTGroves$groups==3)[[BEASTMeds$`3`$treenumbers[[1]]]],
                     which(BEASTGroves$groups==4)[[BEASTMeds$`4`$treenumbers[[1]]]])
# prepare a vector to highlight median and MCC trees
highlightTrees <- rep(1,201)
highlightTrees[[201]] <- 2
highlightTrees[BEASTMedTreeNums] <- 2
# prepare colours:
BEASTcols <- c("#66c2a5","#fc8d62","#8da0cb","#e78ac3")

# plot:
plotGrovesD3(BEASTscape$pco,
          groups=as.vector(BEASTGroves$groups),
          colors=BEASTcols,
          col_lab="Cluster",
          symbol_var = highlightTrees,
          size_range = c(60,600),
          size_var = highlightTrees,
          legend_width=0)

## ----BEASTtree_diffs-----------------------------------------------------
# differences between the MCC tree and the median from the largest cluster:
treeDist(DengueBEASTMCC,BEASTMedTrees[[1]])
plotTreeDiff(DengueBEASTMCC,BEASTMedTrees[[1]], use.edge.length=FALSE, 
             treesFacing = TRUE, colourMethod = "palette", palette = funky)
# differences between the median trees from clusters 1 and 2:
treeDist(BEASTMedTrees[[1]],BEASTMedTrees[[2]])
plotTreeDiff(BEASTMedTrees[[1]],BEASTMedTrees[[2]], use.edge.length=FALSE, 
             treesFacing = TRUE, colourMethod = "palette", palette = funky)