1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238
|
## ----setup, echo=FALSE---------------------------------------------------
# set global chunk options: images will be 7x7 inches
knitr::opts_chunk$set(fig.width=7, fig.height=7, fig.path="figs/", cache=FALSE, dpi=96)
options(digits = 4)
## ----load, message=FALSE, warning=FALSE----------------------------------
library("treespace")
library("phangorn")
library("adegenet")
## ----load_BEAST_trees----------------------------------------------------
data(DengueTrees)
## ----sample_BEAST_trees--------------------------------------------------
set.seed(123)
BEASTtrees <- DengueTrees[sample(1:length(DengueTrees),200)]
## ----load_seqs-----------------------------------------------------------
data(DengueSeqs)
## ----make_NJ-------------------------------------------------------------
makeTree <- function(x){
tree <- nj(dist.dna(x, model = "TN93"))
tree <- root(tree, resolve.root=TRUE, outgroup="D4Thai63")
tree
}
DnjRooted <- makeTree(DengueSeqs)
# Note, there is a (small) negative branch length.
# We set this to 0 to avoid warnings from the phangorn package later:
DnjRooted$edge.length[which(DnjRooted$edge.length < 0)] <- 0
plot(DnjRooted)
## ----make_NJ_boots, results="hide"---------------------------------------
Dnjboots <- boot.phylo(DnjRooted, DengueSeqs, B=100,
makeTree, trees=TRUE, rooted=TRUE)
Dnjboots
## ----see_NJ_boots--------------------------------------------------------
plot(DnjRooted)
drawSupportOnEdges(Dnjboots$BP)
## ----make_ML, results="hide", message=FALSE------------------------------
Dfit.ini <- pml(DnjRooted, as.phyDat(DengueSeqs), k=4)
Dfit <- optim.pml(Dfit.ini, optNni=TRUE, optBf=TRUE,
optQ=TRUE, optGamma=TRUE, model="GTR")
# root:
DfitTreeRooted <- root(Dfit$tree, resolve.root=TRUE, outgroup="D4Thai63")
## ----view_ML-------------------------------------------------------------
plot(DfitTreeRooted)
## ----make_ML_boots, results="hide"---------------------------------------
# bootstrap supports:
DMLboots <- bootstrap.pml(Dfit, optNni=TRUE)
# root:
DMLbootsrooted <- lapply(DMLboots, function(x) root(x, resolve.root=TRUE, outgroup="D4Thai63"))
class(DMLbootsrooted) <- "multiPhylo"
## ----see_ML_boots--------------------------------------------------------
plotBS(DfitTreeRooted, DMLboots, type="phylogram")
## ----run_treespace-------------------------------------------------------
# collect the trees into a single object of class multiPhylo:
DengueTrees <- c(BEASTtrees, Dnjboots$trees, DMLbootsrooted,
DnjRooted, DfitTreeRooted)
class(DengueTrees) <- "multiPhylo"
# add tree names:
names(DengueTrees)[1:200] <- paste0("BEAST",1:200)
names(DengueTrees)[201:300] <- paste0("NJ_boots",1:100)
names(DengueTrees)[301:400] <- paste0("ML_boots",1:100)
names(DengueTrees)[[401]] <- "NJ"
names(DengueTrees)[[402]] <- "ML"
# create vector corresponding to tree inference method:
Dtype <- c(rep("BEAST",200),rep("NJboots",100),rep("MLboots",100),"NJ","ML")
# use treespace to find and project the distances:
Dscape <- treespace(DengueTrees, nf=5)
## ----simple_plot---------------------------------------------------------
# simple plot:
plotGrovesD3(Dscape$pco, groups=Dtype)
## ----make_better_plot----------------------------------------------------
Dcols <- c("#1b9e77","#d95f02","#7570b3")
Dmethod <- c(rep("BEAST",200),rep("NJ",100),rep("ML",100),"NJ","ML")
Dbootstraps <- c(rep("replicates",400),"NJ","ML")
Dhighlight <- c(rep(1,400),2,2)
plotGrovesD3(Dscape$pco,
groups=Dmethod,
colors=Dcols,
col_lab="Tree type",
size_var=Dhighlight,
size_range = c(100,500),
size_lab="",
symbol_var=Dbootstraps,
symbol_lab="",
point_opacity=c(rep(0.4,400),1,1),
legend_width=80)
## ----make_better_plot_with_labels----------------------------------------
plotGrovesD3(Dscape$pco,
groups=Dmethod,
treeNames = names(DengueTrees), # add the tree names as labels
colors=Dcols,
col_lab="Tree type",
size_var=Dhighlight,
size_range = c(100,500),
size_lab="",
symbol_var=Dbootstraps,
symbol_lab="",
point_opacity=c(rep(0.4,400),1,1),
legend_width=80)
## ----make_better_plot_with_tooltips--------------------------------------
plotGrovesD3(Dscape$pco,
groups=Dmethod,
tooltip_text = names(DengueTrees), # add the tree names as tooltip text
colors=Dcols,
col_lab="Tree type",
size_var=Dhighlight,
size_range = c(100,500),
size_lab="",
symbol_var=Dbootstraps,
symbol_lab="",
point_opacity=c(rep(0.4,400),1,1),
legend_width=80)
## ----scree_plot----------------------------------------------------------
barplot(Dscape$pco$eig, col="navy")
## ----plot_3D, eval=FALSE-------------------------------------------------
# library(rgl)
# Dcols3D <- c(rep(Dcols[[1]],200),rep(Dcols[[2]],100),rep(Dcols[[3]],100),Dcols[[2]],Dcols[[3]])
# rgl::plot3d(Dscape$pco$li[,1],Dscape$pco$li[,2],Dscape$pco$li[,3],
# type="s",
# size=c(rep(1.5,400),3,3),
# col=Dcols3D,
# xlab="", ylab="", zlab="")
## ----NJ_and_ML_overlap---------------------------------------------------
# trees with the same topology as the NJ tree:
which(as.matrix(Dscape$D)["NJ",]==0)
# trees with the same topology as the ML tree:
which(as.matrix(Dscape$D)["ML",]==0)
## ----compare_trees_NJ_v_ML-----------------------------------------------
# comparing NJ and ML:
plotTreeDiff(DnjRooted,DfitTreeRooted, use.edge.length=FALSE)
treeDist(DnjRooted,DfitTreeRooted)
## ----compare_trees_NJ_v_ML_recoloured------------------------------------
# comparing NJ and ML:
plotTreeDiff(DnjRooted,DfitTreeRooted, use.edge.length=FALSE,
treesFacing = TRUE, colourMethod = "palette", palette = funky)
## ----make_BEAST_median---------------------------------------------------
BEASTmed <- medTree(BEASTtrees)
## ----compare_BEAST_meds--------------------------------------------------
BEASTmed$trees
treeDist(BEASTmed$trees[[1]],BEASTmed$trees[[2]])
## ----save_BEAST_median---------------------------------------------------
BEASTrep <- BEASTmed$trees[[1]]
## ----compare_BEAST_to_other_trees----------------------------------------
# comparing BEAST median and NJ:
plotTreeDiff(BEASTrep,DnjRooted, use.edge.length=FALSE,
treesFacing = TRUE, colourMethod = "palette", palette = funky)
treeDist(BEASTrep,DnjRooted)
# comparing BEAST median and ML:
plotTreeDiff(BEASTrep,DfitTreeRooted, use.edge.length=FALSE,
treesFacing = TRUE, colourMethod = "palette", palette = funky)
treeDist(BEASTrep,DfitTreeRooted)
# comparing BEAST median to a random BEAST tree:
num <- runif(1,1,200)
randomBEASTtree <- BEASTtrees[[num]]
plotTreeDiff(BEASTrep, randomBEASTtree, use.edge.length=FALSE,
treesFacing = TRUE, colourMethod = "palette", palette = funky)
treeDist(BEASTrep,randomBEASTtree)
## ----BEASTtrees----------------------------------------------------------
# load the MCC tree
data(DengueBEASTMCC)
# concatenate with other BEAST trees
BEAST201 <- c(BEASTtrees, DengueBEASTMCC)
# compare using treespace:
BEASTscape <- treespace(BEAST201, nf=5)
# simple plot:
plotGrovesD3(BEASTscape$pco)
## ----BEASTtrees_clusters-------------------------------------------------
# find clusters or 'groves':
BEASTGroves <- findGroves(BEASTscape, nclust=4, clustering = "single")
## ----BEASTtrees_meds-----------------------------------------------------
# find median tree(s) per cluster:
BEASTMeds <- medTree(BEAST201, groups=BEASTGroves$groups)
# for each cluster, select a single median tree to represent it:
BEASTMedTrees <- c(BEASTMeds$`1`$trees[[1]],
BEASTMeds$`2`$trees[[1]],
BEASTMeds$`3`$trees[[1]],
BEASTMeds$`4`$trees[[1]])
## ----BEASTtrees_plot, warning=FALSE--------------------------------------
# extract the numbers from the tree list 'BEASTtrees' which correspond to the median trees:
BEASTMedTreeNums <-c(which(BEASTGroves$groups==1)[[BEASTMeds$`1`$treenumbers[[1]]]],
which(BEASTGroves$groups==2)[[BEASTMeds$`2`$treenumbers[[1]]]],
which(BEASTGroves$groups==3)[[BEASTMeds$`3`$treenumbers[[1]]]],
which(BEASTGroves$groups==4)[[BEASTMeds$`4`$treenumbers[[1]]]])
# prepare a vector to highlight median and MCC trees
highlightTrees <- rep(1,201)
highlightTrees[[201]] <- 2
highlightTrees[BEASTMedTreeNums] <- 2
# prepare colours:
BEASTcols <- c("#66c2a5","#fc8d62","#8da0cb","#e78ac3")
# plot:
plotGrovesD3(BEASTscape$pco,
groups=as.vector(BEASTGroves$groups),
colors=BEASTcols,
col_lab="Cluster",
symbol_var = highlightTrees,
size_range = c(60,600),
size_var = highlightTrees,
legend_width=0)
## ----BEASTtree_diffs-----------------------------------------------------
# differences between the MCC tree and the median from the largest cluster:
treeDist(DengueBEASTMCC,BEASTMedTrees[[1]])
plotTreeDiff(DengueBEASTMCC,BEASTMedTrees[[1]], use.edge.length=FALSE,
treesFacing = TRUE, colourMethod = "palette", palette = funky)
# differences between the median trees from clusters 1 and 2:
treeDist(BEASTMedTrees[[1]],BEASTMedTrees[[2]])
plotTreeDiff(BEASTMedTrees[[1]],BEASTMedTrees[[2]], use.edge.length=FALSE,
treesFacing = TRUE, colourMethod = "palette", palette = funky)
|