1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323
|
---
title: "Comparing trees by tip label categories"
author: "Michelle Kendall"
date: "`r Sys.Date()`"
output: rmarkdown::html_vignette
vignette: >
%\VignetteEngine{knitr::rmarkdown}
%\VignetteIndexEntry{treespace worked example: comparing by tip categories}
\usepackage[utf8]{inputenc}
---
```{r setup, echo=FALSE}
# set global chunk options: images will be 7x4 inches
knitr::opts_chunk$set(fig.width=7, fig.height=4, fig.path="figs/", cache=FALSE, dpi=96)
options(digits = 4)
```
We introduce distance measures between trees with 'related' tip labels in a recent bioRxiv preprint, [*Comparing phylogenetic trees according to tip label categories*](https://doi.org/10.1101/251710).
Here we provide an overview of the measures and present some simple examples.
```{r setupVisible, message=FALSE}
# load treespace and packages for plotting:
library(treespace)
library(RColorBrewer)
library(ggplot2)
library(reshape2)
# set colour scheme
pal <- brewer.pal(3,"Dark2")
```
Suppose you have a tree with taxa labels which correspond to some broad "categories" and you want to compare it to other tree(s) whose taxa also correspond to those categories. If the tip labels of the trees do not match exactly then the other metrics supplied in `treespace` cannot be applied. The function `relatedTreeDist` is a version of `treeDist` (the Kendall Colijn metric) which compares tip labels at their category levels, and `treeConcordance` is a measure of how "concordant" a tree is to a reference tree linking the categories, as we shall explain below.
Some examples of instances where we may wish to compare trees with such labels:
```{r create_examples_table, echo=FALSE}
cats <- c("Bacterial sub-types e.g. serogroups",
"Species",
"Host",
"Protein families",
"Population groups",
"Disjoint features or phenotypes",
"Broad taxonomy")
indivs <- c("Bacterial isolates",
"Orthologous genes",
"Deep sequencing reads of pathogen",
"Proteins",
"Individual organisms",
"Individual organisms",
"Individual organisms")
exTable <- cbind(cats,indivs)
colnames(exTable) <- c("Categories", "Individuals")
```
```{r table1, echo=FALSE, message=FALSE, warnings=FALSE, results='asis'}
require(pander)
panderOptions('table.split.table', Inf)
pander(exTable, style = 'rmarkdown')
```
## Related tree distance
We begin by demonstrating the measure between trees with related tip sets, `relatedTreeDist`.
As an example, suppose we have trees created from deep-sequencing reads from patients A, B and C as follows:
```{r create_trees_for_collapsing_example, echo=FALSE}
tr1 <- read.tree(text="(((c4,c3),(c2,c1)),((b3,(b2,b1)),((a3,a2),a1)));")
tr1$tip.label <- c("Patient C read 4","Patient C read 3",
"Patient C read 2","Patient C read 1",
"Patient B read 3","Patient B read 2",
"Patient B read 1",
"Patient A read 3","Patient A read 2",
"Patient A read 1")
tr1Collapsed <- read.tree(text="(C,(B,A));")
tr1Collapsed$tip.label <- c("Patient C","Patient B","Patient A")
tr2 <- read.tree(text="((((c4,c3),(c2,c1)),b2),(b1,((a3,a2),a1)));")
tr2$tip.label <- c("Patient C read 4","Patient C read 3",
"Patient C read 2","Patient C read 1",
"Patient B read 2","Patient B read 1",
"Patient A read 3","Patient A read 2",
"Patient A read 1")
tr2Collapsed <- read.tree(text="((C,B),(B,A));")
tr2Collapsed$tip.label <- c("Patient C","Patient B","Patient B","Patient A")
```
```{r plot_patient_trees, echo=FALSE}
layout(matrix(1:2,1,2))
plot(tr1, tip.color=c(rep(pal[[1]],4),rep(pal[[2]],3),rep(pal[[3]],3)),
edge.width = 4, type="cladogram", no.margin=TRUE,
label.offset= 0.5, cex=0.8,
edge.color=c("black",rep(pal[[1]],6),"black",rep(pal[[2]],5),rep(pal[[3]],5)))
plot(tr2, tip.color=c(rep(pal[[1]],4),rep(pal[[2]],2),rep(pal[[3]],3)),
edge.width = 4, type="cladogram", no.margin=TRUE,
label.offset= 0.5, cex=0.8,
edge.color=c(rep("black",2),rep(pal[[1]],6),pal[[2]],"black",pal[[2]],"black", rep(pal[[3]],4)))
```
We can think of "collapsing" these trees down to one tip per monophyletic clade of tips from the same category, and renaming the new tips with just the category labels. For example, the trees above would collapse into these, respectively:
```{r plot_collapsed_trees, echo=FALSE}
layout(matrix(1:2,1,2))
plot(tr1Collapsed, tip.color=c(pal[[1]],pal[[2]],pal[[3]]),
edge.width = 4, type="cladogram", no.margin=TRUE,
label.offset=0.1, font=4, cex=0.8,
edge.color=c(pal[[1]],"black",pal[[2]],pal[[3]]))
plot(tr2Collapsed, tip.color=c(pal[[1]],rep(pal[[2]],2),pal[[3]]),
edge.width = 4, type="cladogram", no.margin=TRUE,
label.offset=0.1, font=4, cex=0.8,
edge.color=c("black",pal[[1]],pal[[2]],"black",pal[[2]],pal[[3]]))
```
We calculate the distance between the original trees using `relatedTreeDist` as follows. The function requires a data frame telling it which individuals belong to which categories:
```{r relatedTreeDist}
df <- cbind(c(rep("Patient A",3),rep("Patient B",3),rep("Patient C",4)),
sort(tr1$tip.label))
df
relatedTreeDist(list(tr1,tr2),df)[[1]]
```
The function `relatedTreeDist` can take a list of many trees as input, and it produces a distance matrix giving the distances between each pair of trees. Since we only supplied two trees, we just returned the first (only) element of this matrix.
We now explain how this value is calculated. We find the *mean* height of the most recent common ancestor (MRCA) of each pair of categories in the **collapsed** trees. That is, we effectively find all the pairwise depths of MRCAs:
```{r tipsMRCAdepths}
tipsMRCAdepths(tr1Collapsed)
tipsMRCAdepths(tr2Collapsed)
```
then reduce these down to an average depth per pair of (different category) tips, per tree:
```{r calculation_of_relatedTreeDist, echo=FALSE}
MRCAdepths <- cbind(tipsMRCAdepths(tr1Collapsed),c(0.5,0,0.5))
colnames(MRCAdepths) <- c("tip1","tip2","Tree 1", "Tree 2")
MRCAdepths
```
and then we take the Euclidean distances between the final two columns:
$$
d(T_1,T_2) = \sqrt{ (1-0.5)^2 + (0-0)^2 + (0-0.5)^2 } = 0.7071068
$$
We now give a larger example with more trees. Along the way we use the function `simulateIndTree` which takes a "category-level" tree and randomly adds individuals to make an example individuals tree.
```{r six_comparable_trees, fig.height=12}
set.seed(948)
# set colour scheme
pal2 <- brewer.pal(8,"Dark2")
# create a "base" (category-level) tree
baseTree <- rtree(8)
baseTree$tip.label <- letters[8:1]
tree1 <- simulateIndTree(baseTree, itips=3, permuteTips=FALSE)
tree2 <- simulateIndTree(baseTree, itips=4, permuteTips=FALSE)
tree2$tip.label <- c(paste0("h_",2:5),paste0("g_",3:6),paste0("f_",c(2,3,7,9)),
paste0("e_",c(1,2,5,6)),paste0("d_",3:6),paste0("c_",5:8),
paste0("b_",c(3,5,6,9)),paste0("a_",c(1,4,8,9)))
tree3 <- simulateIndTree(baseTree, itips=4, tipPercent = 20)
tree3NotForPlotting <- simulateIndTree(baseTree, itips=4, permuteTips=FALSE) # just for setting colours later
tree4 <- simulateIndTree(baseTree, itips=6)
tree4NotForPlotting <- simulateIndTree(baseTree, itips=6, permuteTips=FALSE)
# create another base tree
baseTree2 <- rtree(8, tip.label=letters[8:1])
tree5 <- simulateIndTree(baseTree2, itips=6, permuteTips=FALSE)
tree6 <- simulateIndTree(baseTree2, itips=6, tipPercent=30)
# set up colour palettes
tipcolors3 <- c(rep(pal2[[1]],3),rep(pal2[[2]],3),rep(pal2[[3]],3),rep(pal2[[4]],3),rep(pal2[[5]],3),rep(pal2[[6]],3),rep(pal2[[7]],3),rep(pal2[[8]],3))
tipcolors4 <- c(rep(pal2[[1]],4),rep(pal2[[2]],4),rep(pal2[[3]],4),rep(pal2[[4]],4),rep(pal2[[5]],4),rep(pal2[[6]],4),rep(pal2[[7]],4),rep(pal2[[8]],4)) # colours for 4 tips
tipcolors6 <- c(rep(pal2[[1]],6),rep(pal2[[2]],6),rep(pal2[[3]],6),rep(pal2[[4]],6),rep(pal2[[5]],6),rep(pal2[[6]],6),rep(pal2[[7]],6),rep(pal2[[8]],6)) # colours for 6 tips
# prepare tip colours for plotting
tree3TipOrder <- sapply(tree3$tip.label, function(x) which(tree3NotForPlotting$tip.label==x))
tree4TipOrder <- sapply(tree4$tip.label, function(x) which(tree4NotForPlotting$tip.label==x))
tree5TipOrder <- sapply(tree5$tip.label, function(x) which(tree4NotForPlotting$tip.label==x))
tree6TipOrder <- sapply(tree6$tip.label, function(x) which(tree4NotForPlotting$tip.label==x))
layout(matrix(c(1,4,2,5,3,6), 2,3))
plot(tree1, tip.color=tipcolors3, no.margin=TRUE,
edge.width = 4, use.edge.length = FALSE,
label.offset= 0.5, font=4, cex=2)
plot(tree2, tip.color=tipcolors4, no.margin=TRUE,
edge.width = 4, use.edge.length = FALSE,
label.offset= 0.5, font=4, cex=2)
plot(tree3, tip.color=tipcolors4[tree3TipOrder], no.margin=TRUE,
edge.width = 4, use.edge.length = FALSE,
label.offset= 0.5, font=4, cex=1.8)
plot(tree4, tip.color=tipcolors6[tree4TipOrder], no.margin=TRUE,
edge.width = 4, use.edge.length = FALSE,
label.offset= 0.5, font=4, cex=1.2)
plot(tree5, tip.color=tipcolors6[tree5TipOrder], no.margin=TRUE,
edge.width = 4, use.edge.length = FALSE,
label.offset= 0.5, font=4, cex=1.2)
plot(tree6, tip.color=tipcolors6[tree6TipOrder], no.margin=TRUE,
edge.width = 4, use.edge.length = FALSE,
label.offset= 0.5, font=4, cex=1.2)
```
We have created a variety of trees. Trees 1 and 2 have differing numbers of tips, and differing tip labels, but their collapsed forms would be identical. Tree 3 is similar to Trees 1 and 2 but with a few tips permuted, so that the categories are no longer monophyletic. Tree 4 is similar but with more tips permuted. Trees 5 and 6 were created from a different "base" tree so the relationships between the categories are quite different when we compare, for example, Tree 1 and Tree 5.
The function `relatedTreeDist` gives a quantitative description of these similarities and differences. First we just put the trees into a list and create a data frame linking individuals to categories:
```{r relatedTreeDist_six_trees}
trees <- list(tree1,tree2,tree3,tree4,tree5,tree6)
df <- cbind(sort(rep(letters[1:8],9)),sort(paste0(letters[1:8],"_",rep(1:9,8))))
dists <- relatedTreeDist(trees,df)
dists
```
We can visualise these distances with a heatmap:
```{r six_heatmap}
dists <- as.matrix(dists)
colnames(dists) <- rownames(dists) <- c("Tree 1", "Tree 2", "Tree 3", "Tree 4",
"Tree 5", "Tree 6")
melted_dists <- melt(dists, na.rm=TRUE)
ggheatmap <- ggplot(data = melted_dists, aes(Var2, Var1, fill = value))+
geom_tile(color = "darkgrey")+
scale_fill_gradient2(low = "white", high = "firebrick2",
name="Tree distance") +
theme_minimal() + coord_fixed()
ggheatmap +
geom_text(aes(Var2, Var1, label = signif(value,2)), color = "black", size = 8) +
theme(
axis.title.x = element_blank(),
axis.title.y = element_blank(),
panel.grid.major = element_blank(),
panel.border = element_blank(),
panel.background = element_blank(),
axis.text = element_text(size=12),
axis.ticks = element_blank(),
legend.position = "none" )
```
## Concordance
The concordance measure takes a reference tree R whose tips are a set of categories (with no repeats), and a comparable tree T whose tips are individuals from those categories. The measure counts the proportion of tip pairs whose MRCA in T appears at the same place as the MRCA of their categories in R. It takes a value in (0,1]. Full concordance, where the collapsed version of T is identical to R, gives a value of 1.
For example,
```{r concordance_basic}
catTree <- read.tree(text="(C,(B,A));")
indTree1 <- read.tree(text="(((c4,c3),(c2,c1)),((b1,b2),((a3,a2),a1)));")
indTree2 <- read.tree(text="(((c4,c3),(c2,c1)),((b1,a2),((a3,b2),a1)));")
indTree3 <- read.tree(text="((a3,(a2,a1)),((b1,c2),((c3,b2),(c1,c4))));")
plot(catTree, tip.color=pal,
edge.width = 4, type="cladogram",
label.offset= 0.5, font=4,
edge.color=c(pal[[1]],"black",pal[[2]],pal[[3]]))
layout(matrix(1:3,1,3))
plot(indTree1, tip.color=c(rep(pal[[1]],4),rep(pal[[2]],2),rep(pal[[3]],3)),
edge.width = 4, type="cladogram", no.margin=TRUE,
label.offset= 0.5, font=4, cex=2,
edge.color=c("black",rep(pal[[1]],6),"black",rep(pal[[2]],3),rep(pal[[3]],5)))
plot(indTree2, tip.color=c(rep(pal[[1]],4),pal[[2]],rep(pal[[3]],2),pal[[2]],pal[[3]]),
edge.width = 4, type="cladogram", no.margin=TRUE,
label.offset= 0.5, font=4, cex=2,
edge.color=c("black",rep(pal[[1]],6),rep("black",2),pal[[2]],pal[[3]],
rep("black",2),pal[[3]],pal[[2]],pal[[3]]))
plot(indTree3, tip.color=c(rep(pal[[3]],3),pal[[2]],rep(pal[[1]],2),pal[[2]],rep(pal[[1]],2)),
edge.width = 4, type="cladogram", no.margin=TRUE,
label.offset= 0.5, font=4, cex=2,
edge.color=c("black",rep(pal[[3]],4),rep("black",2),pal[[2]],pal[[1]],
rep("black",2),pal[[1]],pal[[2]],rep(pal[[1]],3)))
```
The first tree has monophyly per category, and the relative positions of those categories are identical to the reference tree. Correspondingly, the concordance is 1:
```{r concordance_T1}
df <- cbind(c(rep("A",3),rep("B",2),rep("C",4)),sort(indTree1$tip.label))
treeConcordance(catTree,indTree1,df)
```
The second tree is fairly similar to the reference, with category C monophyletic and basal to the rest. However, the paraphyly of categories A and B gives a concordance less than 1:
```{r concordance_T2}
treeConcordance(catTree,indTree2,df)
```
Finally, the third tree has much less in common with the reference and accordingly has lower concordance:
```{r concordance_T3}
treeConcordance(catTree,indTree3,df)
```
To give a broader feel for how the concordance measure behaves, we now perform an experiment where we create random trees and compare them to a reference. We permute the tips in the individuals trees by a given percent, and watch the concordance decrease as the permutations increase and the category-level relationships weaken. In the paper we report our findings for `n=10` and `reps=100`, that is, the reference tree has 10 tips, individuals trees have `n*n=100` tips, and we performed 100 repetitions for each level of permutation. To keep the calculations quick we only use `n=5` and `reps=10` here.
```{r concordance_permuations}
n <- 5
reps <- 10
reftree <- rtree(n, tip.label=letters[1:n])
indTrees <- lapply(rep(seq(0,100,20),reps), function(x)
simulateIndTree(reftree,itips=n,permuteTips=TRUE,tipPercent=x))
df <- cbind(sort(rep(letters[1:n],n)),sort(indTrees[[1]]$tip.label))
concordances <- sapply(indTrees, function(x) treeConcordance(reftree,x,df))
resultsTab <- as.data.frame(cbind(rep(seq(0,100,20),reps),concordances))
colnames(resultsTab) <- c("Percentage","Concordance")
resultsTab[,1] <- factor(resultsTab[,1], levels=seq(0,100,20))
plot <- ggplot(resultsTab, aes(x=Percentage, y=Concordance))
plot + geom_boxplot(aes(colour=Percentage)) + theme_bw() + guides(colour=FALSE) +
xlab("Percentage of tips permuted") + ylim(c(0,1)) +
theme(axis.text = element_text(size=18),
axis.title = element_text(size=18))
```
|