File: findGroves.R

package info (click to toggle)
r-cran-treespace 1.1.4.1%2Bdfsg-1
  • links: PTS, VCS
  • area: main
  • in suites: bookworm
  • size: 1,444 kB
  • sloc: cpp: 24; sh: 13; makefile: 2
file content (100 lines) | stat: -rw-r--r-- 3,506 bytes parent folder | download | duplicates (4)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
##'
#' Identify clusters of similar trees
#'
#' This function uses hierarchical clustering on principal components output by \code{\link{treespace}} to identify groups of similar trees. Clustering relies on \code{\link{hclust}}, using Ward's method by default.
#'
#' @param x an object of the class multiPhylo or the output of the function \code{treespace}
#' @param method (ignored if x is from \code{treespace}) this specifies a function which outputs the summary of a tree in the form of a vector. Defaults to \code{treeVec}.
#' @param nf (ignored if x is from \code{treespace}) the number of principal components to retain
#' @param clustering a character string indicating the clustering method to be used; defaults to Ward's method; see argument \code{method} in \code{?hclust} for more details.
#' @param nclust an integer indicating the number of clusters to find; if not provided, an interactive process based on cutoff threshold selection is used.
#' @param ... further arguments to be passed to \code{treespace}
#'
#' @author Thibaut Jombart \email{thibautjombart@@gmail.com}
#' @author  Michelle Kendall \email{michelle.louise.kendall@@gmail.com}
#'
#' @import ape
#' @importFrom stats hclust
#' @importFrom stats dist
#' @importFrom stats cutree
#' @importFrom graphics plot
#' @importFrom graphics abline
#' 
#'
#' @seealso \code{\link{plotGroves}} to display results
#'
#' @return
#' A list containing:
#' \itemize{
#'  \item groups: a factor defining groups of trees
#'  \item treespace: the output of treespace
#' }
#'
#' @examples
#'
#' if(require("adegenet") && require("adegraphics")){
#' ## load data
#' data(woodmiceTrees)
#'
#' ## run findGroves: treespace+clustering
#' res <- findGroves(woodmiceTrees, nf=5, nclust=6)
#'
#' ## plot results on first 2 axes
#' PCs <- res$treespace$pco$li
#' s.class(PCs, fac=res$groups, col=funky(6))
#'
#' ## using plotGroves
#' plotGroves(res)
#' }
#'
#'
#' @export
findGroves <- function(x, method="treeVec", nf=NULL, clustering="ward.D2",
                        nclust=NULL, ...){
    ## CHECK input type ##
    if (inherits(x, "multiPhylo")) {
       ## GET OUTPUT OF TREESPACE ##
       type <- "multiPhylo_object"
       res <- treespace(x, method=method, nf=nf, ...)
       }
    else if (inherits(x, "list")) { 
      # test if it is an output from treespace
      inherits(x$D,"dist")
      inherits(x$pco,c("pco","dudi"))
      type <- "treespace_output"
      res <- x 
      } 
    else stop("x should be a multiphylo object or output of function treespace")
      
    ## GET CLUSTERS ##
    ## hierharchical clustering
    clust <- hclust(dist(res$pco$li), method=clustering)

    ## select nclust interactively if needed
    if(is.null(nclust)){
        ans <- NA
        continue <- TRUE
        while(is.na(ans) || continue){
            plot(clust)
            cat("\nPlease define a cutoff point: ")
            ans <- as.double(readLines(n = 1))
            abline(h=ans, col="royalblue", lty=2)
            cat("\nAre you happy with this choice (y/n): ")
            continue <- as.character(readLines(n = 1))!="y"
        }
        grp <- cutree(clust, h=ans)
    } else {
        ## cut tree
        grp <- cutree(clust, k=nclust)
    }

    ## BUILD RESULT AND RETURN ##
    # retrieve tree names:
    if (type=="multiPhylo_object") names(grp) <- names(x)
    if (type=="treespace_output") names(grp) <- colnames(as.matrix(x$D)) 
    
    out <- list(groups=factor(grp), treespace=res)

    return(out)
} # end findGroves