1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515
|
#' Linear MRCA function
#'
#' Function to make the most recent common ancestor (MRCA) matrix of a tree, where entry (i,j) gives the MRCA of tips i and j.
#' The function is linear, exploiting the fact that the tree is rooted.
#'
#' @author Michelle Kendall \email{michelle.louise.kendall@@gmail.com}
#'
#' @param tree an object of the class \code{phylo} which should be rooted.
#' @param k (optional) number of tips in tree, for faster computation
#'
#' @importFrom phangorn Descendants
#' @importFrom phangorn Children
#' @importFrom combinat combn
#' @importFrom compiler cmpfun
#'
#' @examples
#'
#' ## generate a random tree
#' x <- rtree(6)
#'
#' ## create matrix of MRCAs: entry (i,j) is the node number of the MRCA of tips i and j
#' linearMrca(x,6)
#'
#'
#' @export
linearMrca <- function(tree,k=0) { # k is number of tips, which can be passed to the function to save on computation
if(!is.rooted(tree)){stop("This function requires the tree to be rooted")}
if (k==0) {k <- length(tree$tip.label)}
M <- matrix(0, nrow=k, ncol=k); # initialise matrix
T <- tree$Nnode # total number of internal nodes
# traverse internal nodes from root down
for (tmp in (k+1):(k+T)){
# find the children of tmp. Then tmp is the MRCA of all pairs of tips descending from different children
tmp.desc <- Children(tree,tmp)
Desc <- sapply(1:length(tmp.desc), function(x) Descendants(tree,tmp.desc[[x]],type="tips"))
if (length(tmp.desc)==2) { # tmp is the MRCA of tips descending from child one and tips from child two
I <- Desc[[1]]; J <- Desc[[2]]
for (i in I) {
for (j in J) {
M[i,j] <- M[j,i] <- tmp
}
}
}
else { # for each pair of children of tmp, tmp is the MRCA of their descendant tips
pairs <- combn(length(Desc),2)
for (p in 1:length(pairs[1,])) {
for (i in Desc[[pairs[1,p]]]) {
for (j in Desc[[pairs[2,p]]]) {
M[i,j] <- M[j,i] <- tmp
}
}
}
}
}
diag(M) <- 1:k # we define the diagonal elements of M to be the tips themselves
return(M)
}
linearMrca <- compiler::cmpfun(linearMrca) # compile
#' Tree vector function
#'
#' Function which takes an object of class phylo and outputs the vector for the Kendall Colijn metric.
#' The elements of the vector are numeric if \code{return.lambda.function=FALSE} (default),
#' and otherwise they are functions of lambda.
#'
#' @author Jacob Almagro-Garcia \email{nativecoder@@gmail.com}
#' @author Michelle Kendall \email{michelle.louise.kendall@@gmail.com}
#'
#' @param tree an object of the class \code{phylo}
#' @param lambda a number in [0,1] which specifies the extent to which topology (default, with lambda=0) or branch lengths (lambda=1) are emphasised. This argument is ignored if \code{return.lambda.function=TRUE}.
#' @param return.lambda.function If true, a function that can be invoked with different lambda values is returned. This function returns the vector of metric values for the given lambda.
#' @param emphasise.tips an optional list of tips whose entries in the tree vector should be emphasised. Defaults to \code{NULL}.
#' @param emphasise.weight applicable only if a list is supplied to \code{emphasise.tips}, this value (default 2) is the number by which vector entries corresponding to those tips are emphasised.
#'
#' @return The vector of values according to the metric, or a function that produces the vector given a value of lambda.
#'
#' @import ape
#' @importFrom Rcpp evalCpp
#' @importFrom combinat combn2
#' @importFrom methods is
#' @useDynLib treespace
#'
#' @examples
#'
#' ## generate a random tree
#' tree <- rtree(6)
#' ## topological vector of mrca distances from root:
#' treeVec(tree)
#' ## vector of mrca distances from root when lambda=0.5:
#' treeVec(tree,0.5)
#' ## vector of mrca distances as a function of lambda:
#' vecAsFunction <- treeVec(tree,return.lambda.function=TRUE)
#' ## evaluate the vector at lambda=0.5:
#' vecAsFunction(0.5)
#'
#'
#' @export
treeVec <- function(tree, lambda=0, return.lambda.function=FALSE, emphasise.tips=NULL, emphasise.weight=2) {
if(lambda<0 || lambda>1) stop("Pick lambda in [0,1]")
if(!is(tree, "phylo")) stop("Tree should be of class phylo")
if(is.rooted(tree)!=TRUE) stop("Metric is for rooted trees only")
# check edge lengths are defined; if not, assign them all to be "1".
# If edge lengths are going to be involved in the vector, i.e. lambda>0 or the vector is a function of lambda, output a warning about this.
# With thanks to GitHub user hyanwong for pointing out the unnecessary warning in issue #2.
if (is.null(tree$edge.length)) {
tree$edge.length <- rep(1,length(tree$edge))
if ((return.lambda.function==TRUE)||(lambda>0)) {
warning("Tree edge lengths are not defined, setting edges to have length 1")
}
}
num_leaves <- length(tree$tip.label)
num_edges <- nrow(tree$edge)
# We work with ordered labels, using this vector to transform indices.
tip_order <- match(1:num_leaves, order(tree$tip.label))
# Ordering the edges by first column places the root at the bottom.
# Descendants will be placed always before parents.
edge_order <- ape::reorder.phylo(tree, "postorder", index.only=T)
edges <- tree$edge[edge_order,]
edge_lengths <- tree$edge.length[edge_order]
# To emphasise the position of certain tips, if needed:
if (is.null(emphasise.tips)==FALSE){
# check tip labels are recognised:
unknownTips <- setdiff(emphasise.tips,tree$tip.label)
if (length(unknownTips)>0) {stop(paste('Tip "',unknownTips,'" not recognised. ', sep=''))}
# translate important tip label names into order
emphasise.tips.order <- tip_order[which(tree$tip.label%in%emphasise.tips)]
# find the positions where these tips appear in the k choose 2 elements of the final vector
pairs <- combn2(1:num_leaves)
emphasise.vector.elements <- union(which(pairs[,1]%in%emphasise.tips.order ),which(pairs[,2]%in%emphasise.tips.order ))
# make a vector to multiply positions concerning important tips by chosen weighting
tip.weighting <- c(sapply(1:length(pairs[,1]), function(x) if(x%in%emphasise.vector.elements){emphasise.weight} else{1}),
sapply(1:num_leaves, function(y) if(y%in%emphasise.tips.order){emphasise.weight} else{1}))
} else{
tip.weighting <- rep(1,0.5*num_leaves*(num_leaves+1))
}
# We annotated the nodes of the tree in this list. In two passes we are going to
# compute the partition each node induces in the tips (bottom-up pass) and the distance
# (in branch length and number of branches) from the root to each node (top-down pass).
annotated_nodes <- list()
# Bottom up (compute partitions, we store the branch lengths to compute distances
# to the root on the way down).
for(i in 1:num_edges) {
parent <- edges[i,1]
child <- edges[i,2]
# Initialization (leaves).
if(child <= num_leaves) {
# We translate the index for the sorted labels.
child <- tip_order[child]
# Leaves have as children themselves.
annotated_nodes[[child]] <- list(root_distance=NULL, edges_to_root=1, partitions=list(child))
}
# Aggregate the children partitions (only if we are not visiting a leaf).
aggregated_partitions <- annotated_nodes[[child]]$partitions[[1]]
if((child > num_leaves)) {
for(p in 2:length(annotated_nodes[[child]]$partitions))
aggregated_partitions <- c(aggregated_partitions, annotated_nodes[[child]]$partitions[[p]])
}
# Update the branch length on the child.
annotated_nodes[[child]]$root_distance <- edge_lengths[i]
# We have not visited this internal node before.
if(parent > length(annotated_nodes) || is.null(annotated_nodes[[parent]])) {
# Assume the first time we get the left child partition.
annotated_nodes[[parent]] <- list(root_distance=NULL, edges_to_root=1, partitions=list(aggregated_partitions))
}
# This is not the first time we have visited the node.
else {
# We store the next partition of leaves.
annotated_nodes[[parent]]$partitions[[length(annotated_nodes[[parent]]$partitions)+1]] <- aggregated_partitions
}
}
# Update the distance to the root at the root (i.e. 0)
# And the number of edges to the root (i.e. 0).
annotated_nodes[[num_leaves+1]]$root_distance <- 0
annotated_nodes[[num_leaves+1]]$edges_to_root <- 0
# Top down, compute distances to the root for each node.
for(i in num_edges:1) {
parent <- edges[i,1]
child <- edges[i,2]
# If the child is a leaf we translate the index for the sorted labels.
if(child <= num_leaves)
child <- tip_order[child]
annotated_nodes[[child]]$root_distance <- annotated_nodes[[child]]$root_distance + annotated_nodes[[parent]]$root_distance
annotated_nodes[[child]]$edges_to_root <- annotated_nodes[[child]]$edges_to_root + annotated_nodes[[parent]]$edges_to_root
}
# Distance vectors
vector_length <- (num_leaves*(num_leaves-1)/2) + num_leaves
length_root_distances <- double(vector_length)
topological_root_distances <- integer(vector_length)
# Fill-in the leaves (notice the involved index translation for leaves).
topological_root_distances[(vector_length-num_leaves+1):vector_length] <- 1
length_root_distances[(vector_length-num_leaves+1):vector_length] <- edge_lengths[match(1:num_leaves, edges[,2])][order(tree$tip.label)]
# Instead of computing the lexicographic order for the combination pairs assume we
# are filling in a symmetric distance matrix (using only the triangular upper part).
# We just need to "roll" the matrix indices into the vector indices.
# Examples for (k=5)
# The combination c(1,4) would be located at position 3 on the vector.
# The combination c(2,1) would be located at position 1 on the vector because d(2,1) = d(1,2).
# The combination c(2,3) would be located at position 5 on the vector.
index_offsets <- c(0, cumsum((num_leaves-1):1))
# This is the slow part, we compute both vectors as gain would be marginal.
sapply(annotated_nodes, function(node) {
# We skip leaves and the root (if the MRCA for M groups of leaves is at the root
# all combinations of leaves -among different groups- have 0 as distance to the root).
# For large trees this can spare us of computing a lot of combinations.
# Example: In a perfectly balanced binary tree (N/2 leaves at each side of the root),
# at the root we'd save (N/2) * (N/2) combinations to update. Worst case scenario is completely
# unbalanced tree (N-1,1), we'd save in that case only N-1 combinations.
# Make sure we are not visiting a leaf or the root.
if(length(node$partitions) > 1 && node$root_distance > 0) {
# Update all combinations for pairs of leaves from different groups.
num_groups <- length(node$partitions)
for(group_a in 1:(num_groups-1)) {
for(group_b in (group_a+1):num_groups) {
updateDistancesWithCombinations(length_root_distances, topological_root_distances, node$partitions[[group_a]],
node$partitions[[group_b]], index_offsets, node$root_distance, node$edges_to_root)
}
}
}
})
if(!return.lambda.function)
return(tip.weighting * (lambda * length_root_distances + (1-lambda) * topological_root_distances))
else {
return(function(l) {
if(l<0 || l>1) stop("Pick lambda in [0,1]")
return(tip.weighting * (l * length_root_distances + (1-l) * topological_root_distances)) })
}
}
#' Metric function
#'
#' Comparison of two trees using the Kendall Colijn metric
#'
#' @author Jacob Almagro-Garcia \email{nativecoder@@gmail.com}
#' @author Michelle Kendall \email{michelle.louise.kendall@@gmail.com}
#'
#' @param tree.a an object of the class \code{phylo}
#' @param tree.b an object of the class \code{phylo} (with the same tip labels as tree.a)
#' @param lambda a number in [0,1] which specifies the extent to which topology (default, with lambda=0) or branch lengths (lambda=1) are emphasised. This argument is ignored if \code{return.lambda.function=TRUE}.
#' @param return.lambda.function If true, a function that can be invoked with different lambda values is returned.
#' This function returns the vector of metric values for the given lambda.
#' @param emphasise.tips an optional list of tips whose entries in the tree vectors should be emphasised. Defaults to \code{NULL}.
#' @param emphasise.weight applicable only if a list is supplied to \code{emphasise.tips}, this value (default 2) is the number by which vector entries corresponding to those tips are emphasised.
#'
#' @return The distance between the two trees according to the metric for the given value of lambda, or a function that produces the distance given a value of lambda.
#'
#'
#' @import ape
#'
#'
#' @examples
#'
#' ## generate random trees
#' tree.a <- rtree(6)
#' tree.b <- rtree(6)
#' treeDist(tree.a,tree.b) # lambda=0
#' treeDist(tree.a,tree.b,1) # lambda=1
#' dist.func <- treeDist(tree.a,tree.b,return.lambda.function=TRUE) # distance as a function of lambda
#' dist.func(0) # evaluate at lambda=0. Equivalent to treeDist(tree.a,tree.b).
#' ## We can see how the distance changes when moving from focusing on topology to length:
#' plot(sapply(seq(0,1,length.out=100), function(x) dist.func(x)), type="l",ylab="",xlab="")
#'
#' ## The distance may also change if we emphasise the position of certain tips:
#' plot(sapply(tree.a$tip.label, function(x) treeDist(tree.a,tree.b,emphasise.tips=x)),
#' xlab="Tip number",ylab="Distance when vector entries corresponding to tip are doubled")
#'
#'
#' @export
treeDist <- function(tree.a, tree.b, lambda=0, return.lambda.function=FALSE, emphasise.tips=NULL, emphasise.weight=2) {
if(length(tree.a$tip.label) != length(tree.b$tip.label)) stop("Trees must have the same number of tips")
if(setequal(tree.a$tip.label,tree.b$tip.label) == FALSE) stop("Trees must have the same tip label sets")
metric_a <- treeVec(tree.a, lambda, return.lambda.function, emphasise.tips, emphasise.weight)
metric_b <- treeVec(tree.b, lambda, return.lambda.function, emphasise.tips, emphasise.weight)
if(!return.lambda.function) {
return(sqrt(sum((metric_a - metric_b)^2)))
}
else {
return(function(l) {
return(sqrt(sum((metric_a(l) - metric_b(l))^2)))
})
}
}
#' Metric function for \code{multiPhylo} input
#'
#' Comparison of a list of trees using the Kendall Colijn metric. Output is given as a pairwise distance matrix. This is equivalent to the \code{$D} output from \code{treespace} but may be preferable for large datasets, and when principal co-ordinate analysis is not required. It includes an option to save memory at the expense of computation time.
#'
#' @author Jacob Almagro-Garcia \email{nativecoder@@gmail.com}
#' @author Michelle Kendall \email{michelle.louise.kendall@@gmail.com}
#'
#' @param trees an object of the class \code{multiPhylo} containing the trees to be compared
#' @param lambda a number in [0,1] which specifies the extent to which topology (default, with lambda=0) or branch lengths (lambda=1) are emphasised. This argument is ignored if \code{return.lambda.function=TRUE}.
#' @param return.lambda.function If true, a function that can be invoked with different lambda values is returned.
#' This function returns the matrix of metric values for the given lambda.
#' @param save.memory A flag that saves a lot of memory but increases the execution time (not compatible with return.lambda.function=TRUE).
#' @param emphasise.tips an optional list of tips whose entries in the tree vectors should be emphasised. Defaults to \code{NULL}.
#' @param emphasise.weight applicable only if a list is supplied to \code{emphasise.tips}, this value (default 2) is the number by which vector entries corresponding to those tips are emphasised.
#'
#' @return The pairwise tree distance matrix or a function that produces the distance matrix given a value for lambda.
#'
#'
#' @import ape
#' @importFrom fields rdist
#' @importFrom stats as.dist
#'
#'
#' @examples
#'
#' ## generate 10 random trees, each with 6 tips
#' trees <- rmtree(10,6)
#'
#' ## pairwise distance matrix when lambda=0
#' multiDist(trees)
#'
#' ## pairwise distance matrix as a function of lambda:
#' m <- multiDist(trees, return.lambda.function=TRUE)
#'
#' ## evaluate at lambda=0. Equivalent to multiDist(trees).
#' m0 <- m(0)
#'
#' ## save memory by recomputing each tree vector for each pairwise tree comparison (for fixed lambda):
#' m0.5 <- multiDist(trees,0.5,save.memory=TRUE)
#'
#'
#' @export
multiDist <- function(trees, lambda=0,
return.lambda.function=FALSE, save.memory=FALSE,
emphasise.tips=NULL, emphasise.weight=2) {
if(!inherits(trees, "multiPhylo")) stop("trees should be a multiphylo object")
num_trees <- length(trees)
if(num_trees<2) {
stop("multiDist expects at least two trees")
}
# make name labels well defined
if(is.null(names(trees))) names(trees) <- 1:num_trees
else if(length(unique(names(trees)))!=num_trees){
warning("duplicates detected in tree labels - using generic names")
names(trees) <- 1:num_trees
}
lab <- names(trees)
# check all trees have same tip labels
for (i in 1:num_trees) {
if (!setequal(trees[[i]]$tip.label,trees[[1]]$tip.label)) {
stop(paste0("Tree ",lab[[i]]," has different tip labels from the first tree."))
}
}
# Working with numbers (no functions).
if(!return.lambda.function) {
# Here we speed up the computation by storing all vectors (a lot of memory for big trees).
if(!save.memory) {
# Compute the metric vector for all trees.
tree_metrics <- t(sapply(trees, function(tree) {treeVec(tree, lambda, F, emphasise.tips, emphasise.weight)}))
distances <- rdist(tree_metrics)
}
# To save memory we recompute the vectors for each tree comparison (way slower but we don't eat a ton of memory).
else {
distances <- matrix(0.0, num_trees, num_trees)
sapply(1:(num_trees-1), function(i) {
sapply((i+1):num_trees, function(j) {
distances[i,j] <<- distances[j,i] <<- treeDist(trees[[i]], trees[[j]], lambda, F, emphasise.tips, emphasise.weight)
})
})
}
return(as.dist(distances))
}
# Working with functions.
else {
if(save.memory)
warning("save.memory=TRUE is incompatible with return.lambda.function=TRUE, setting save.memory=FALSE")
# Compute the list of metric functions for all trees.
tree_metric_functions <- sapply(trees, function(tree) {treeVec(tree, lambda, T, emphasise.tips, emphasise.weight)})
# Inner function that we'll return, computes the distance matrix given lambda.
compute_distance_matrix_function <- function(l) {
distances <- matrix(0.0, num_trees, num_trees)
sapply(1:(num_trees-1), function(i) {
sapply((i+1):num_trees, function(j) {
distances[i,j] <<- distances[j,i] <<- sqrt(sum((tree_metric_functions[[i]](l) - tree_metric_functions[[j]](l))^2))
})
})
return(as.dist(distances))
}
return(compute_distance_matrix_function)
}
}
#' Metric function for comparing a reference \code{phylo} to \code{multiPhylo} input
#'
#' Comparison of a single reference tree to a list of trees using the Kendall Colijn metric. Output is given as a vector of distances from the reference tree.
#'
#' @author Michelle Kendall \email{michelle.louise.kendall@@gmail.com}
#'
#' @param refTree a tree of class \code{phylo}, the "reference tree".
#' @param trees an object of the class \code{multiPhylo} containing the trees to be compared to the reference tree
#' @param lambda a number in [0,1] which specifies the extent to which topology (default, with lambda=0) or branch lengths (lambda=1) are emphasised. This argument is ignored if \code{return.lambda.function=TRUE}.
#' @param return.lambda.function If true, a function that can be invoked with different lambda values is returned.
#' This function returns the vector of metric values for the given lambda.
#' @param emphasise.tips an optional list of tips whose entries in the tree vectors should be emphasised. Defaults to \code{NULL}.
#' @param emphasise.weight applicable only if a list is supplied to \code{emphasise.tips}, this value (default 2) is the number by which vector entries corresponding to those tips are emphasised.
#'
#' @return The vector of distances, where entry i corresponds to the distance between the i'th tree and the reference tree, or a function that produces the vector of distances given a value for lambda.
#'
#'
#' @import ape
#' @importFrom stats as.dist
#'
#'
#' @examples
#'
#' ## generate a single reference tree with 6 tips
#' refTree <- rtree(6)
#'
#' ## generate 10 random trees, each with 6 tips
#' trees <- rmtree(10,6)
#'
#' ## find the distances from each of the 10 random trees to the single reference tree
#' refTreeDist(refTree,trees)
#'
#' @export
refTreeDist <- function(refTree, trees, lambda=0, return.lambda.function=FALSE,
emphasise.tips=NULL, emphasise.weight=2) {
if(!inherits(refTree, "phylo")) stop("refTree should be a phylo object")
if(!inherits(trees, "multiPhylo")) stop("trees should be a multiphylo object")
num_trees <- length(trees)
# make name labels well defined
if(is.null(names(trees))) names(trees) <- 1:num_trees
else if(length(unique(names(trees)))!=num_trees){
warning("duplicates detected in tree labels - using generic names")
names(trees) <- 1:num_trees
}
lab <- names(trees)
# check all trees have same tip labels
for (i in 1:num_trees) {
if (!setequal(trees[[i]]$tip.label,refTree$tip.label)) {
stop(paste0("Tree ",lab[[i]]," has different tip labels from the reference tree."))
}
}
# Working with numbers (no functions).
if(!return.lambda.function) {
# compute reference tree vector, which will be used repeatedly
refVec <- treeVec(refTree, lambda, F, emphasise.tips, emphasise.weight)
# for each tree, compute its vector and store Euclidean distance from refVec
distances <- sapply(trees, function(x) {
tmpVec <- treeVec(x, lambda, F, emphasise.tips, emphasise.weight)
sqrt(sum((refVec-tmpVec)^2))
})
return(as.vector(distances))
}
# Working with functions.
else {
# compute reference tree vector function
refVec <- treeVec(refTree, lambda, T, emphasise.tips, emphasise.weight)
# Compute the list of metric functions for all trees.
treeVecs <- sapply(trees, function(x) treeVec(x, lambda, T, emphasise.tips, emphasise.weight))
# Inner function that we'll return, computes the distance matrix given lambda.
compute_distance_vector_function <- function(l) {
sapply(1:num_trees, function(x) sqrt(sum((refVec(l)-treeVecs[[x]](l))^2)))
}
return(compute_distance_vector_function)
}
}
|