1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108
|
#ifndef RADIX_TREE_IT
#define RADIX_TREE_IT
#include <iterator>
// forward declaration
template <typename K, typename T> class radix_tree;
template <typename K, typename T> class radix_tree_node;
template <typename K, typename T>
class radix_tree_it {
public:
using iterator_category = std::forward_iterator_tag;
using value_type = std::pair<K, T>;
using difference_type = std::pair<K, T>;
using pointer = std::pair<K, T>*;
using reference = std::pair<K, T>&;
radix_tree_it() : m_pointee(0) { }
radix_tree_it(const radix_tree_it& r) : m_pointee(r.m_pointee) { }
radix_tree_it& operator=(const radix_tree_it& r) { m_pointee = r.m_pointee; return *this; }
~radix_tree_it() { }
std::pair<const K, T>& operator* () const;
std::pair<const K, T>* operator-> () const;
const radix_tree_it<K, T>& operator++ ();
radix_tree_it<K, T> operator++ (int);
// const radix_tree_it<K, T>& operator-- ();
bool operator!= (const radix_tree_it<K, T> &lhs) const;
bool operator== (const radix_tree_it<K, T> &lhs) const;
radix_tree_node<K, T> *m_pointee;
radix_tree_it(radix_tree_node<K, T> *p) : m_pointee(p) { }
radix_tree_node<K, T>* increment(radix_tree_node<K, T>* node) const;
radix_tree_node<K, T>* descend(radix_tree_node<K, T>* node) const;
};
template <typename K, typename T>
radix_tree_node<K, T>* radix_tree_it<K, T>::increment(radix_tree_node<K, T>* node) const
{
radix_tree_node<K, T>* parent = node->m_parent;
if (parent == NULL)
return NULL;
typename radix_tree_node<K, T>::it_child it = parent->m_children.find(node->m_key);
assert(it != parent->m_children.end());
++it;
if (it == parent->m_children.end())
return increment(parent);
else
return descend(it->second);
}
template <typename K, typename T>
radix_tree_node<K, T>* radix_tree_it<K, T>::descend(radix_tree_node<K, T>* node) const
{
if (node->m_is_leaf)
return node;
typename radix_tree_node<K, T>::it_child it = node->m_children.begin();
assert(it != node->m_children.end());
return descend(it->second);
}
template <typename K, typename T>
std::pair<const K, T>& radix_tree_it<K, T>::operator* () const
{
return *m_pointee->m_value;
}
template <typename K, typename T>
std::pair<const K, T>* radix_tree_it<K, T>::operator-> () const
{
return m_pointee->m_value;
}
template <typename K, typename T>
bool radix_tree_it<K, T>::operator!= (const radix_tree_it<K, T> &lhs) const
{
return m_pointee != lhs.m_pointee;
}
template <typename K, typename T>
bool radix_tree_it<K, T>::operator== (const radix_tree_it<K, T> &lhs) const
{
return m_pointee == lhs.m_pointee;
}
template <typename K, typename T>
const radix_tree_it<K, T>& radix_tree_it<K, T>::operator++ ()
{
if (m_pointee != NULL) // it is undefined behaviour to dereference iterator that is out of bounds...
m_pointee = increment(m_pointee);
return *this;
}
template <typename K, typename T>
radix_tree_it<K, T> radix_tree_it<K, T>::operator++ (int)
{
radix_tree_it<K, T> copy(*this);
++(*this);
return copy;
}
#endif // RADIX_TREE_IT
|