1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403
|
#' Compose tweening between states
#'
#' The `tween_state()` is a counterpart to `tween_states()` that is aimed at
#' letting you gradually build up a scene by composing state changes one by one.
#' This setup lets you take more control over each state change and allows you
#' to work with datasets with uneven number of rows, flexibly specifying what
#' should happen with entering and exiting data. `keep_state()` is a simple
#' helper for letting you pause at a state. `open_state()` is a shortcut from
#' tweening from an empty dataset with a given `enter()` function while
#' `close_state()` is the same but will instead tween into an empty dataset with
#' a given `exit()` function.
#'
#' @param .data A data.frame to start from. If `.data` is the result of a prior
#' tween, only the last frame will be used for the tween. The new tween will
#' then be added to the prior tween
#'
#' @param to A data.frame to end at. It must contain the same columns as .data
#' (exluding `.frame`)
#'
#' @param ease The easing function to use. Either a single string or one for
#' each column in the data set.
#'
#' @param nframes The number of frames to calculate for the tween
#'
#' @param id The column to match observations on. If `NULL` observations will be
#' matched by position. See the *Match, Enter, and Exit* section for more
#' information.
#'
#' @param enter,exit functions that calculate a start state for new observations
#' that appear in `to` or an end state for observations that are not present in
#' `to`. If `NULL` the new/old observations will not be part of the tween. The
#' function gets a data.frame with either the start state of the exiting
#' observations, or the end state of the entering observations and must return
#' a modified version of that data.frame. See the *Match, Enter, and Exit*
#' section for more information.
#'
#' @return A data.frame containing all the intermediary states in the tween,
#' each state will be enumerated by the `.frame` column
#'
#' @section Match, Enter, and Exit:
#' When there are discrepancies between the two states to tweeen between you
#' need a way to resolve the discrepancy before calculating the intermediary
#' states. With discrepancies we mean that some data points are present in the
#' start state and not in the end state, and/or some are present in the end
#' state but not in the start state. A simple example is that the start state
#' contains 100 rows and the end state contains 70. There are 30 missing rows
#' that we need to do something about before we can calculate the tween.
#'
#' **Making pairs**
#' The first question to answer is "How do we know which observations are
#' disappearing (*exiting*) and/or appearing (*entering*)?". This is done with
#' the `id` argument which should give a column name to match rows between the
#' two states on. If `id = NULL` the rows will be matched by position (in the
#' above example the last 30 rows in the start state will be entering). The `id`
#' column must only contain unique values in order to work.
#'
#' **Making up states**
#' Once the rows in each state has been paired you'll end up with three sets of
#' data. One containing rows that is present in both the start and end state,
#' one containing rows only present in the start state, and one only containing
#' rows present in the end state. The first group is easy - here you just tween
#' between each rows - but for the other two we'll need some state to start or
#' end the tween with. This is really the purpose of the `enter` and `exit`
#' functions. They take a data frame containing the subset of data that has not
#' been matched and must return a new data frame giving the state that these
#' rows must be tweened from/into. A simple example could be an `enter` function
#' that sets the variable giving the opacity in the plot to 0 - this will make
#' the new points fade into view during the transition.
#'
#' **Ignoring discrepancies**
#' The default values for `enter` and `exit` is `NULL`. This value indicate that
#' non-matching rows should simply be ignored for the transition and simply
#' appear in the last frame of the tween. This is the default.
#'
#' @importFrom rlang enquo
#' @importFrom vctrs vec_rbind vec_cbind
#' @export
#'
#' @examples
#' data1 <- data.frame(
#' x = 1:20,
#' y = 0,
#' colour = 'forestgreen',
#' stringsAsFactors = FALSE
#' )
#' data2 <- data1
#' data2$x <- 20:1
#' data2$y <- 1
#'
#' data <- data1 %>%
#' tween_state(data2, 'linear', 50) %>%
#' keep_state(20) %>%
#' tween_state(data1, 'bounce-out', 50)
#'
#' # Using enter and exit (made up numbers)
#' df1 <- data.frame(
#' country = c('Denmark', 'Sweden', 'Norway'),
#' population = c(5e6, 10e6, 3.5e6)
#' )
#' df2 <- data.frame(
#' country = c('Denmark', 'Sweden', 'Norway', 'Finland'),
#' population = c(6e6, 10.5e6, 4e6, 3e6)
#' )
#' df3 <- data.frame(
#' country = c('Denmark', 'Norway'),
#' population = c(10e6, 6e6)
#' )
#' to_zero <- function(x) {
#' x$population <- 0
#' x
#' }
#' pop_devel <- df1 %>%
#' tween_state(df2, 'cubic-in-out', 50, id = country, enter = to_zero) %>%
#' tween_state(df3, 'cubic-in-out', 50, id = country, enter = to_zero,
#' exit = to_zero)
#'
tween_state <- function(.data, to, ease, nframes, id = NULL, enter = NULL, exit = NULL) {
.data[] <- lapply(.data, fix_old_mapped_discrete)
to[] <- lapply(to, fix_old_mapped_discrete)
from <- .get_last_frame(.data)
from$.phase <- rep('raw', length.out = nrow(from))
to$.phase <- rep('raw', length.out = nrow(to))
to$.id <- rep(NA_integer_, length.out = nrow(to))
id <- enquo(id)
if (.has_frames(.data)) nframes <- nframes + 1
if (!setequal(names(from), names(to))) {
stop('from and to must have identical columns', call. = FALSE)
}
if (nrow(from) == 0 && nrow(to) == 0) {
return(.with_prior_frames(.data, from, nframes))
}
to <- to[, match(names(from), names(to)), drop = FALSE]
if (length(ease) == 1) ease <- rep(ease, ncol(from) - 2)
if (length(ease) == ncol(from) - 2) {
ease <- c(ease, 'linear', 'linear') # To account for .phase and .id columns
} else {
stop('Ease must be either a single string or one for each column', call. = FALSE)
}
if (!is_integerish(nframes, 1L)) {
stop("`nframes` must be a single count", call. = FALSE)
}
classes <- if (nrow(from) == 0) col_classes(to) else col_classes(from)
if (nrow(from) > 0 && nrow(to) > 0) {
to_classes <- col_classes(to)
mismatch <- to_classes != classes
for (i in which(mismatch)) {
all_na_to <- all(is.na(to[[i]]))
all_na_from <- all(is.na(from[[i]]))
if (all_na_from) {
storage.mode(from[[i]]) <- storage.mode(to[[i]])
} else if (all_na_to) {
storage.mode(to[[i]]) <- storage.mode(from[[i]])
} else {
stop('The ', names(to)[i], 'column differs in type between the two inputs', call. = FALSE)
}
}
}
full_set <- .complete_states(from, to, id, enter, exit, .max_id(.data))
to$.id <- full_set$orig_to
tweendata <- lapply(seq_along(classes), function(i) {
d <- list(full_set$from[[i]], full_set$to[[i]])
state <- simple_state(as.integer(nframes), ease[i])
switch(
classes[i],
numeric = interpolate_numeric_state(d, state),
logical = interpolate_logical_state(d, state),
factor = interpolate_factor_state(d, state),
character = interpolate_character_state(d, state),
colour = interpolate_colour_state(d, state),
date = interpolate_date_state(d, state),
datetime = interpolate_datetime_state(d, state),
constant = interpolate_constant_state(d, state),
numlist = interpolate_numlist_state(d, state),
list = interpolate_list_state(d, state),
phase = get_phase_state(d, state)
)
})
tweendata <- structure(tweendata, names = names(full_set$from), row.names = seq_along(tweendata[[1]]), class = 'data.frame')
tweendata$.frame <- rep(seq_len(nframes - 1), each = nrow(full_set$from))
tweendata <- vec_rbind(
if (nframes > 1) vec_cbind(from, .frame = rep(1, nrow(from))) else NULL,
tweendata[tweendata$.frame != 1, , drop = FALSE],
vec_cbind(to, .frame = rep(nframes, nrow(to)))
)
.with_prior_frames(.data, tweendata, nframes)
}
#' @rdname tween_state
#' @export
keep_state <- function(.data, nframes) {
state <- .get_last_frame(.data)
state$.phase <- rep('raw', length.out = nrow(state))
if (.has_frames(.data)) nframes <- nframes + 1
if (nrow(state) == 0) {
return(.with_prior_frames(.data, state, nframes))
}
states <- state[rep(seq_len(nrow(state)), nframes), , drop = FALSE]
states$.phase[seq_len(nrow(state) * (nframes - 1))] <- 'static'
states$.frame <- rep(seq_len(nframes), each = nrow(state))
.with_prior_frames(.data, states, nframes)
}
#' @rdname tween_state
#' @export
open_state <- function(.data, ease, nframes, enter) {
to <- .get_first_frame(.data)
if (.has_frames(.data)) nframes <- nframes + 1
tweendata <- tween_state(to[0, , drop = FALSE], to, ease, nframes, enter = enter)
.with_later_frames(.data, tweendata, nframes)
}
#' @rdname tween_state
#' @export
close_state <- function(.data, ease, nframes, exit) {
from <- .get_last_frame(.data)
if (.has_frames(.data)) nframes <- nframes + 1
tweendata <- tween_state(from, from[0, , drop = FALSE], ease, nframes, exit = exit)
.with_prior_frames(.data, tweendata, nframes)
}
#' Helpers for working with tweened data
#'
#' These are internal helpers for extracting and inserting data into a
#' data.frame of tweened states.
#'
#' @param data,prior,later A data.frame. If a `.frame` column exists it will be interpreted
#' as a data.frame containing multiple states
#'
#' @param new_tween The result of a tweening
#'
#' @return A data.frame
#' @keywords internal
#' @export
#'
.get_last_frame <- function(data) {
nframes <- attr(data, 'nframes')
data <- if (!is.null(nframes)) {
data[data$.frame == nframes, names(data) != '.frame', drop = FALSE]
} else if ('.frame' %in% names(data)) {
data[data$.frame == max(data$.frame), names(data) != '.frame', drop = FALSE]
} else {
data
}
if (is.null(data$.id)) {
data$.id <- seq_len(nrow(data))
}
data
}
#' @rdname dot-get_last_frame
#' @export
.get_first_frame <- function(data) {
data <- if ('.frame' %in% names(data)) {
data[data$.frame == 1, names(data) != '.frame', drop = FALSE]
} else {
data
}
if (is.null(data$.id)) {
data$.id <- seq_len(nrow(data))
}
data
}
#' @rdname dot-get_last_frame
#' @export
.with_prior_frames <- function(prior, new_tween, nframes) {
nframes_before <- attr(prior, 'nframes')
if (is.null(nframes_before) && nrow(prior) > 0 && '.frame' %in% names(prior)) nframes_before <- max(prior$.frame)
frames <- if (!is.null(nframes_before)) {
prior <- prior[prior$.frame != nframes_before, , drop = FALSE]
new_tween$.frame <- new_tween$.frame + nframes_before - 1
if (is.character(prior$.id)) new_tween$.id <- as.character(new_tween$.id)
else if (is.character(new_tween$.id)) prior$.id <- as.character(prior$.id)
vec_rbind(prior, new_tween)
} else {
nframes_before <- 1
new_tween
}
attr(frames, 'nframes') <- nframes + nframes_before - 1
attr(frames, 'max_id') <- find_max_id(prior, new_tween)
frames
}
#' @rdname dot-get_last_frame
#' @export
.with_later_frames <- function(later, new_tween, nframes) {
nframes_before <- attr(later, 'nframes')
nframes_before <- if (is.null(nframes_before) && nrow(later) > 0 && '.frame' %in% names(later)) max(later$.frame) else 1
frames <- if ('.frame' %in% names(later)) {
later <- later[later$.frame != 1, , drop = FALSE]
later$.frame <- later$.frame + max(new_tween$.frame)
if (is.character(later$.id)) new_tween$.id <- as.character(new_tween$.id)
else if (is.character(new_tween$.id)) later$.id <- as.character(later$.id)
vec_rbind(new_tween, later)
} else {
new_tween
}
attr(frames, 'nframes') <- nframes + nframes_before - 1
attr(frames, 'max_id') <- find_max_id(later, new_tween)
frames
}
find_max_id <- function(data, new) {
max_new <- if (nrow(new) == 0) 0 else max(new$.id)
max(max_new, .max_id(data))
}
#' Get the highest id occuring in a dataset
#'
#' This is helper for `tween_state` related functions to get the currently
#' highest `.id` in a frame collection
#'
#' @param data A data.frame as returned by `tween_state`
#'
#' @return An integer giving the currently highest id
#'
#' @keywords internal
#' @export
.max_id <- function(data) {
max_id <- attr(data, 'max_id')
if (is.null(max_id) && nrow(data) > 0 && !is.null(data$.id)) max_id <- max(data$.id)
else max_id <- nrow(data)
max_id
}
#' Fill in missing rows using enter and exit functions
#'
#' This function figures out which rows are missing in either state and applies
#' the provided `enter` and `exit` functions to fill in the blanks and provide
#' a 1-to-1 relation between the rows in `from` and `to`.
#'
#' @param from,to Data.frames to tween between
#'
#' @param id The name of the column that holds the matching id
#'
#' @param enter,exit functions to fill out missing rows in `from` and `to`
#' respectively
#'
#' @return A list with the elements `from` and `to` holding the filled out
#' versions of `from` and `to`
#'
#' @keywords internal
#' @importFrom rlang eval_tidy %||% as_function
#' @export
.complete_states <- function(from, to, id, enter, exit, max_id) {
from_id <- eval_tidy(id, from) %||% seq_len(nrow(from))
to_id <- eval_tidy(id, to) %||% seq_len(nrow(to))
if (length(from_id) != nrow(from) || length(to_id) != nrow(to)) {
stop('id must match the length of the data', call. = FALSE)
}
n_to <- nrow(to)
if (anyDuplicated(from_id) || anyDuplicated(to_id) || !setequal(from_id, to_id)) {
from_id <- paste(from_id, count_occourance(from_id), sep = '_')
to_id <- paste(to_id, count_occourance(to_id), sep = '_')
entering <- !to_id %in% from_id
exiting <- !from_id %in% to_id
if (is.null(enter) || sum(entering) == 0) {
to <- to[!entering, , drop = FALSE]
to_id <- to_id[!entering]
enters <- to[0, , drop = FALSE]
enter_id <- to_id[0]
} else {
enters <- as_function(enter)(to[entering, , drop = FALSE])
enters$.phase <- 'enter'
enter_id <- to_id[entering]
}
if (is.null(exit) || sum(exiting) == 0) {
from <- from[!exiting, , drop = FALSE]
from_id <- from_id[!exiting]
exits <- from[0, , drop = FALSE]
exit_id <- from_id[0]
} else {
exits <- as_function(exit)(from[exiting, , drop = FALSE])
exits$.phase <- 'exit'
exit_id <- from_id[exiting]
}
from <- vec_rbind(from, enters)
from_id <- c(from_id, enter_id)
to <- vec_rbind(to, exits)
to_id <- c(to_id, exit_id)
}
from$.id[is.na(from$.id)] <- seq_len(sum(is.na(from$.id))) + max_id
orig_to_id <- from$.id[match(to_id, from_id)][seq_len(n_to)]
to <- to[match(from_id, to_id), , drop = FALSE]
to$.id <- from$.id
list(from = from, to = to, orig_to = orig_to_id)
}
#' @rdname dot-get_last_frame
#' @export
.has_frames <- function(data) {
!is.null(attr(data, 'nframes')) || !is.null(data$.frame)
}
simple_state <- function(n, ease) {
data.frame(state = c(0L, 1L), nframes = c(n - 1L, 0L), ease = c(ease, 'constant'), stringsAsFactors = FALSE)
}
count_occourance <- function(x) {
if (length(x) == 0) return(integer(0))
unsplit(lapply(split(x, x), seq_along), x)
}
fix_old_mapped_discrete <- function(x) {
if (inherits(x, 'mapped_discrete') && storage.mode(x) == 'integer') {
storage.mode(x) <- 'double'
}
x
}
|