File: tween_state.R

package info (click to toggle)
r-cran-tweenr 2.0.2-1
  • links: PTS, VCS
  • area: main
  • in suites: bookworm
  • size: 1,060 kB
  • sloc: cpp: 1,052; ansic: 558; sh: 13; makefile: 2
file content (403 lines) | stat: -rw-r--r-- 15,617 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
#' Compose tweening between states
#'
#' The `tween_state()` is a counterpart to `tween_states()` that is aimed at
#' letting you gradually build up a scene by composing state changes one by one.
#' This setup lets you take more control over each state change and allows you
#' to work with datasets with uneven number of rows, flexibly specifying what
#' should happen with entering and exiting data. `keep_state()` is a simple
#' helper for letting you pause at a state. `open_state()` is a shortcut from
#' tweening from an empty dataset with a given `enter()` function while
#' `close_state()` is the same but will instead tween into an empty dataset with
#' a given `exit()` function.
#'
#' @param .data A data.frame to start from. If `.data` is the result of a prior
#' tween, only the last frame will be used for the tween. The new tween will
#' then be added to the prior tween
#'
#' @param to A data.frame to end at. It must contain the same columns as .data
#' (exluding `.frame`)
#'
#' @param ease The easing function to use. Either a single string or one for
#' each column in the data set.
#'
#' @param nframes The number of frames to calculate for the tween
#'
#' @param id The column to match observations on. If `NULL` observations will be
#' matched by position. See the *Match, Enter, and Exit* section for more
#' information.
#'
#' @param enter,exit functions that calculate a start state for new observations
#' that appear in `to` or an end state for observations that are not present in
#' `to`. If `NULL` the new/old observations will not be part of the tween. The
#' function gets a data.frame with either the start state of the exiting
#' observations, or the end state of the entering observations and must return
#' a modified version of that data.frame. See the *Match, Enter, and Exit*
#' section for more information.
#'
#' @return A data.frame containing all the intermediary states in the tween,
#' each state will be enumerated by the `.frame` column
#'
#' @section Match, Enter, and Exit:
#' When there are discrepancies between the two states to tweeen between you
#' need a way to resolve the discrepancy before calculating the intermediary
#' states. With discrepancies we mean that some data points are present in the
#' start state and not in the end state, and/or some are present in the end
#' state but not in the start state. A simple example is that the start state
#' contains 100 rows and the end state contains 70. There are 30 missing rows
#' that we need to do something about before we can calculate the tween.
#'
#' **Making pairs**
#' The first question to answer is "How do we know which observations are
#' disappearing (*exiting*) and/or appearing (*entering*)?". This is done with
#' the `id` argument which should give a column name to match rows between the
#' two states on. If `id = NULL` the rows will be matched by position (in the
#' above example the last 30 rows in the start state will be entering). The `id`
#' column must only contain unique values in order to work.
#'
#' **Making up states**
#' Once the rows in each state has been paired you'll end up with three sets of
#' data. One containing rows that is present in both the start and end state,
#' one containing rows only present in the start state, and one only containing
#' rows present in the end state. The first group is easy - here you just tween
#' between each rows - but for the other two we'll need some state to start or
#' end the tween with. This is really the purpose of the `enter` and `exit`
#' functions. They take a data frame containing the subset of data that has not
#' been matched and must return a new data frame giving the state that these
#' rows must be tweened from/into. A simple example could be an `enter` function
#' that sets the variable giving the opacity in the plot to 0 - this will make
#' the new points fade into view during the transition.
#'
#' **Ignoring discrepancies**
#' The default values for `enter` and `exit` is `NULL`. This value indicate that
#' non-matching rows should simply be ignored for the transition and simply
#' appear in the last frame of the tween. This is the default.
#'
#' @importFrom rlang enquo
#' @importFrom vctrs vec_rbind vec_cbind
#' @export
#'
#' @examples
#' data1 <- data.frame(
#'   x = 1:20,
#'   y = 0,
#'   colour = 'forestgreen',
#'   stringsAsFactors = FALSE
#' )
#' data2 <- data1
#' data2$x <- 20:1
#' data2$y <- 1
#'
#' data <- data1 %>%
#'   tween_state(data2, 'linear', 50) %>%
#'   keep_state(20) %>%
#'   tween_state(data1, 'bounce-out', 50)
#'
#' # Using enter and exit (made up numbers)
#' df1 <- data.frame(
#'   country = c('Denmark', 'Sweden', 'Norway'),
#'   population = c(5e6, 10e6, 3.5e6)
#' )
#' df2 <- data.frame(
#'   country = c('Denmark', 'Sweden', 'Norway', 'Finland'),
#'   population = c(6e6, 10.5e6, 4e6, 3e6)
#' )
#' df3 <- data.frame(
#'   country = c('Denmark', 'Norway'),
#'   population = c(10e6, 6e6)
#' )
#' to_zero <- function(x) {
#'   x$population <- 0
#'   x
#' }
#' pop_devel <- df1 %>%
#'   tween_state(df2, 'cubic-in-out', 50, id = country, enter = to_zero) %>%
#'   tween_state(df3, 'cubic-in-out', 50, id = country, enter = to_zero,
#'               exit = to_zero)
#'
tween_state <- function(.data, to, ease, nframes, id = NULL, enter = NULL, exit = NULL) {
  .data[] <- lapply(.data, fix_old_mapped_discrete)
  to[] <- lapply(to, fix_old_mapped_discrete)
  from <- .get_last_frame(.data)
  from$.phase <- rep('raw', length.out = nrow(from))
  to$.phase <- rep('raw', length.out = nrow(to))
  to$.id <- rep(NA_integer_, length.out = nrow(to))
  id <- enquo(id)
  if (.has_frames(.data)) nframes <- nframes + 1
  if (!setequal(names(from), names(to))) {
    stop('from and to must have identical columns', call. = FALSE)
  }

  if (nrow(from) == 0 && nrow(to) == 0) {
    return(.with_prior_frames(.data, from, nframes))
  }

  to <- to[, match(names(from), names(to)), drop = FALSE]
  if (length(ease) == 1) ease <- rep(ease, ncol(from) - 2)
  if (length(ease) == ncol(from) - 2) {
    ease <- c(ease, 'linear', 'linear') # To account for .phase and .id columns
  } else {
    stop('Ease must be either a single string or one for each column', call. = FALSE)
  }
  if (!is_integerish(nframes, 1L)) {
    stop("`nframes` must be a single count", call. = FALSE)
  }

  classes <- if (nrow(from) == 0) col_classes(to) else col_classes(from)
  if (nrow(from) > 0 && nrow(to) > 0) {
    to_classes <- col_classes(to)
    mismatch <- to_classes != classes
    for (i in which(mismatch)) {
      all_na_to <- all(is.na(to[[i]]))
      all_na_from <- all(is.na(from[[i]]))
      if (all_na_from) {
        storage.mode(from[[i]]) <- storage.mode(to[[i]])
      } else if (all_na_to) {
        storage.mode(to[[i]]) <- storage.mode(from[[i]])
      } else {
        stop('The ', names(to)[i], 'column differs in type between the two inputs', call. = FALSE)
      }
    }
  }
  full_set <- .complete_states(from, to, id, enter, exit, .max_id(.data))
  to$.id <- full_set$orig_to

  tweendata <- lapply(seq_along(classes), function(i) {
    d <- list(full_set$from[[i]], full_set$to[[i]])
    state <- simple_state(as.integer(nframes), ease[i])
    switch(
      classes[i],
      numeric = interpolate_numeric_state(d, state),
      logical = interpolate_logical_state(d, state),
      factor = interpolate_factor_state(d, state),
      character = interpolate_character_state(d, state),
      colour = interpolate_colour_state(d, state),
      date = interpolate_date_state(d, state),
      datetime = interpolate_datetime_state(d, state),
      constant = interpolate_constant_state(d, state),
      numlist = interpolate_numlist_state(d, state),
      list = interpolate_list_state(d, state),
      phase = get_phase_state(d, state)
    )
  })
  tweendata <- structure(tweendata, names = names(full_set$from), row.names = seq_along(tweendata[[1]]), class = 'data.frame')
  tweendata$.frame <- rep(seq_len(nframes - 1), each = nrow(full_set$from))
  tweendata <- vec_rbind(
    if (nframes > 1) vec_cbind(from, .frame = rep(1, nrow(from))) else NULL,
    tweendata[tweendata$.frame != 1, , drop = FALSE],
    vec_cbind(to, .frame = rep(nframes, nrow(to)))
  )
  .with_prior_frames(.data, tweendata, nframes)
}
#' @rdname tween_state
#' @export
keep_state <- function(.data, nframes) {
  state <- .get_last_frame(.data)
  state$.phase <- rep('raw', length.out = nrow(state))
  if (.has_frames(.data)) nframes <- nframes + 1
  if (nrow(state) == 0) {
    return(.with_prior_frames(.data, state, nframes))
  }
  states <- state[rep(seq_len(nrow(state)), nframes), , drop = FALSE]
  states$.phase[seq_len(nrow(state) * (nframes - 1))] <- 'static'
  states$.frame <- rep(seq_len(nframes), each = nrow(state))
  .with_prior_frames(.data, states, nframes)
}
#' @rdname tween_state
#' @export
open_state <- function(.data, ease, nframes, enter) {
  to <- .get_first_frame(.data)
  if (.has_frames(.data)) nframes <- nframes + 1
  tweendata <- tween_state(to[0, , drop = FALSE], to, ease, nframes, enter = enter)
  .with_later_frames(.data, tweendata, nframes)
}
#' @rdname tween_state
#' @export
close_state <- function(.data, ease, nframes, exit) {
  from <- .get_last_frame(.data)
  if (.has_frames(.data)) nframes <- nframes + 1
  tweendata <- tween_state(from, from[0, , drop = FALSE], ease, nframes, exit = exit)
  .with_prior_frames(.data, tweendata, nframes)
}
#' Helpers for working with tweened data
#'
#' These are internal helpers for extracting and inserting data into a
#' data.frame of tweened states.
#'
#' @param data,prior,later A data.frame. If a `.frame` column exists it will be interpreted
#' as a data.frame containing multiple states
#'
#' @param new_tween The result of a tweening
#'
#' @return A data.frame
#' @keywords internal
#' @export
#'
.get_last_frame <- function(data) {
  nframes <- attr(data, 'nframes')
  data <- if (!is.null(nframes)) {
    data[data$.frame == nframes, names(data) != '.frame', drop = FALSE]
  } else if ('.frame' %in% names(data)) {
    data[data$.frame == max(data$.frame), names(data) != '.frame', drop = FALSE]
  } else {
    data
  }
  if (is.null(data$.id)) {
    data$.id <- seq_len(nrow(data))
  }
  data
}
#' @rdname dot-get_last_frame
#' @export
.get_first_frame <- function(data) {
  data <- if ('.frame' %in% names(data)) {
    data[data$.frame == 1, names(data) != '.frame', drop = FALSE]
  } else {
    data
  }
  if (is.null(data$.id)) {
    data$.id <- seq_len(nrow(data))
  }
  data
}
#' @rdname dot-get_last_frame
#' @export
.with_prior_frames <- function(prior, new_tween, nframes) {
  nframes_before <- attr(prior, 'nframes')
  if (is.null(nframes_before) && nrow(prior) > 0 && '.frame' %in% names(prior)) nframes_before <- max(prior$.frame)
  frames <- if (!is.null(nframes_before)) {
    prior <- prior[prior$.frame != nframes_before, , drop = FALSE]
    new_tween$.frame <- new_tween$.frame + nframes_before - 1
    if (is.character(prior$.id)) new_tween$.id <- as.character(new_tween$.id)
    else if (is.character(new_tween$.id)) prior$.id <- as.character(prior$.id)
    vec_rbind(prior, new_tween)
  } else {
    nframes_before <- 1
    new_tween
  }
  attr(frames, 'nframes') <- nframes + nframes_before - 1
  attr(frames, 'max_id') <- find_max_id(prior, new_tween)
  frames
}
#' @rdname dot-get_last_frame
#' @export
.with_later_frames <- function(later, new_tween, nframes) {
  nframes_before <- attr(later, 'nframes')
  nframes_before <- if (is.null(nframes_before) && nrow(later) > 0 && '.frame' %in% names(later)) max(later$.frame) else 1
  frames <- if ('.frame' %in% names(later)) {
    later <- later[later$.frame != 1, , drop = FALSE]
    later$.frame <- later$.frame + max(new_tween$.frame)
    if (is.character(later$.id)) new_tween$.id <- as.character(new_tween$.id)
    else if (is.character(new_tween$.id)) later$.id <- as.character(later$.id)
    vec_rbind(new_tween, later)
  } else {
    new_tween
  }
  attr(frames, 'nframes') <- nframes + nframes_before - 1
  attr(frames, 'max_id') <- find_max_id(later, new_tween)
  frames
}
find_max_id <- function(data, new) {
  max_new <- if (nrow(new) == 0) 0 else max(new$.id)
  max(max_new, .max_id(data))
}
#' Get the highest id occuring in a dataset
#'
#' This is helper for `tween_state` related functions to get the currently
#' highest `.id` in a frame collection
#'
#' @param data A data.frame as returned by `tween_state`
#'
#' @return An integer giving the currently highest id
#'
#' @keywords internal
#' @export
.max_id <- function(data) {
  max_id <- attr(data, 'max_id')
  if (is.null(max_id) && nrow(data) > 0 && !is.null(data$.id)) max_id <- max(data$.id)
  else max_id <- nrow(data)
  max_id
}
#' Fill in missing rows using enter and exit functions
#'
#' This function figures out which rows are missing in either state and applies
#' the provided `enter` and `exit`  functions to fill in the blanks and provide
#' a 1-to-1 relation between the rows in `from` and `to`.
#'
#' @param from,to Data.frames to tween between
#'
#' @param id The name of the column that holds the matching id
#'
#' @param enter,exit functions to fill out missing rows in `from` and `to`
#' respectively
#'
#' @return A list with the elements `from` and `to` holding the filled out
#' versions of `from` and `to`
#'
#' @keywords internal
#' @importFrom rlang eval_tidy %||% as_function
#' @export
.complete_states <- function(from, to, id, enter, exit, max_id) {
  from_id <- eval_tidy(id, from) %||% seq_len(nrow(from))
  to_id <- eval_tidy(id, to) %||% seq_len(nrow(to))
  if (length(from_id) != nrow(from) || length(to_id) != nrow(to)) {
    stop('id must match the length of the data', call. = FALSE)
  }
  n_to <- nrow(to)
  if (anyDuplicated(from_id) || anyDuplicated(to_id) || !setequal(from_id, to_id)) {
    from_id <- paste(from_id, count_occourance(from_id), sep = '_')
    to_id <- paste(to_id, count_occourance(to_id), sep = '_')
    entering <- !to_id %in% from_id
    exiting <- !from_id %in% to_id

    if (is.null(enter) || sum(entering) == 0) {
      to <- to[!entering, , drop = FALSE]
      to_id <- to_id[!entering]
      enters <- to[0, , drop = FALSE]
      enter_id <- to_id[0]
    } else {
      enters <- as_function(enter)(to[entering, , drop = FALSE])
      enters$.phase <- 'enter'
      enter_id <- to_id[entering]
    }
    if (is.null(exit) || sum(exiting) == 0) {
      from <- from[!exiting, , drop = FALSE]
      from_id <- from_id[!exiting]
      exits <- from[0, , drop = FALSE]
      exit_id <- from_id[0]
    } else {
      exits <- as_function(exit)(from[exiting, , drop = FALSE])
      exits$.phase <- 'exit'
      exit_id <- from_id[exiting]
    }
    from <- vec_rbind(from, enters)
    from_id <- c(from_id, enter_id)
    to <- vec_rbind(to, exits)
    to_id <- c(to_id, exit_id)
  }
  from$.id[is.na(from$.id)] <- seq_len(sum(is.na(from$.id))) + max_id
  orig_to_id <- from$.id[match(to_id, from_id)][seq_len(n_to)]
  to <- to[match(from_id, to_id), , drop = FALSE]
  to$.id <- from$.id

  list(from = from, to = to, orig_to = orig_to_id)
}
#' @rdname dot-get_last_frame
#' @export
.has_frames <- function(data) {
  !is.null(attr(data, 'nframes')) || !is.null(data$.frame)
}
simple_state <- function(n, ease) {
  data.frame(state = c(0L, 1L), nframes = c(n - 1L, 0L), ease = c(ease, 'constant'), stringsAsFactors = FALSE)
}

count_occourance <- function(x) {
  if (length(x) == 0) return(integer(0))
  unsplit(lapply(split(x, x), seq_along), x)
}

fix_old_mapped_discrete <- function(x) {
  if (inherits(x, 'mapped_discrete') && storage.mode(x) == 'integer') {
    storage.mode(x) <- 'double'
  }
  x
}