1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58
|
% Generated by roxygen2: do not edit by hand
% Please edit documentation in R/display_ease.R
\name{display_ease}
\alias{display_ease}
\title{Display an easing function}
\usage{
display_ease(ease)
}
\arguments{
\item{ease}{The name of the easing function to display (see details)}
}
\value{
This function is called for its side effects
}
\description{
This simple helper lets you explore how the different easing functions govern
the interpolation of data.
}
\details{
How transitions proceed between states are defined by an easing function. The
easing function converts the parameterized progression from one state to the
next to a new number between 0 and 1. \code{linear} easing is equivalent to
an identity function that returns the input unchanged. In addition there are
a range of additional easers available, each with three modifiers.
\strong{Easing modifiers:}
\describe{
\item{-in}{The easing function is applied as-is}
\item{-out}{The easing function is applied in reverse}
\item{-in-out}{The first half of the transition it is applied as-is, while
in the last half it is reversed}
}
\strong{Easing functions}
\describe{
\item{quadratic}{Models a power-of-2 function}
\item{cubic}{Models a power-of-3 function}
\item{quartic}{Models a power-of-4 function}
\item{quintic}{Models a power-of-5 function}
\item{sine}{Models a sine function}
\item{circular}{Models a pi/2 circle arc}
\item{exponential}{Models an exponential function}
\item{elastic}{Models an elastic release of energy}
\item{back}{Models a pullback and relase}
\item{bounce}{Models the bouncing of a ball}
}
In addition to this function a good animated explanation can be found
\href{https://easings.net}{here}.
}
\examples{
# The default - identity
display_ease('linear')
# A more fancy easer
display_ease('elastic-in')
}
|