1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240
|
ch.test <- function(x, type = c("dummy", "trigonometric"),
lag1 = FALSE, NW.order = NULL, sid = NULL, xreg = NULL,
pvalue = c("RS", "raw"), rs.nobsreg = 13)
{
ch.test0 <- function(id)
{
# robust covariance matrix estimator
# scaled by the seasonal components
# based on function "sandwich::NeweyWest"
# (other options used in package "sandwich" could be considered here)
# OmegafHat <- crossprod(SD * ehat) / n
SDe <- SD[,id,drop=FALSE] * ehat
if (NW.order > 0)
{
weights <- 1 - seq_len(NW.order) / (NW.order + 1)
OmegafHat <- 0.5 * crossprod(SDe)
for (i in seq_along(weights))
OmegafHat <- OmegafHat +
weights[i] * crossprod(SDe[seq_len(n-i),,drop=FALSE], SDe[-seq_len(i),,drop=FALSE])
OmegafHat <- OmegafHat + t(OmegafHat)
} else
OmegafHat <- crossprod(SDe)
OmegafHat <- OmegafHat / n
# auxiliary elements
# cumulative sum by columns in "SDe" ("SD" multiplied by "ehat" by columns)
Fhat <- apply(SDe, MARGIN = 2, FUN = cumsum)
# summation of crossproducts of "Fhat"
Fhat.cp <- matrix(0, nrow = nrow(OmegafHat), ncol = ncol(OmegafHat))
for (i in seq_len(n))
Fhat.cp <- Fhat.cp + tcrossprod(Fhat[i,])
# test statistic
sum(diag(chol2inv(chol(OmegafHat)) %*% Fhat.cp)) / n^2
}
data.name <- deparse(substitute(x))
type <- match.arg(type)
pvalue <- match.arg(pvalue)
isNullxreg <- is.null(xreg)
n <- length(x)
if (!isNullxreg && NROW(xreg) != n)
stop("wrong dimension of argument ", sQuote("xreg"))
S <- frequency(x)
if (S < 2)
stop("the time series is not seasonal")
if (is.null(NW.order))
NW.order <- round(S * (n/100)^0.25)
# indicator variable for the target seasonal dummies or cycles
if (is.null(sid)) {
sid <- "all"
} else {
#if (!identical(sid, "all"))
if (is.numeric(sid))
{
if (type == "trigonometric")
{
if (length(sid) != floor(S/2))
stop("wrong length of argument ", sQuote("sid"))
tmp <- head(sid, -1)
id <- which(c(rbind(tmp, tmp)) == 1)
if (tail(sid, 1) == 1)
id <- c(id, S-1)
} else {
if (any(!(sid %in% seq_len(S)))) # assumed that no duplicates are defined
stop("wrong definition of argument ", sQuote("sid"))
id <- sid
}
} else
if (!(sid %in% c("all", "joint")))
stop("wrong definition of argument ", sQuote("sid"))
}
# create target regressor variables (seasonal dummies or seasonal cycles)
switch(type,
"dummy" = { # seasonal dummies
#SD <- seasonal.dummies(x)
SD <- do.call("rbind", replicate(ceiling(n/S), diag(S), simplify = FALSE))
SD <- ts(SD, frequency = S, start = c(start(x)[1], 1))
# ignore warning "'end' value not changed"
SD <- suppressWarnings(window(SD, start = start(x), end = end(x)))
},
"trigonometric" = { # seasonal cycles
Sh <- floor(S/2)
isSeven <- as.numeric(S %% 2 == 0)
if (S %in% c(4, 12) && n/S <= 50) {
SD <- .SDtrig[[as.character(S)]][seq_len(n),]
} else {
#SD <- seasonal.cycles(x)
tmp <- matrix(seq_len(n), nrow = Sh-isSeven, ncol = n, byrow = TRUE)
seqsm1 <- seq_len(nrow(tmp))
tmp <- (2 * seqsm1 * pi / S) * tmp
SD <- rbind(cos(tmp), sin(tmp))
SD <- t(SD[c(rbind(seqsm1, seqsm1 + nrow(tmp))),])
if ((S %% 2) == 0)
SD <- cbind(SD, rep(c(-1, 1), len = n))
#SD <- ts(SD, frequency = S, start = c(start(x)[1], 1))
}
}
) # switch
colnames(SD) <- paste0("SD", seq_len(ncol(SD)))
# arrange other possible exogenous variables
if (lag1) {
SD <- SD[-1,] # updating SD is required as well as it will be used by "ch.test0"
xreg <- cbind(lag1 = x[-n], SD, xreg[-1,])
x <- x[-1]
n <- n - 1
} else
xreg <- cbind(SD, xreg)
##NOTE
# in principle it is not a good idea to define the intercept in "xreg" and
# use lm(x ~ 0 + xreg) because stats::summary.lm uses attr(z$terms, "intercept")
# to compute the R-squared, but here the R-squared is not used
if (type == "trigonometric")
xreg <- cbind(c = 1, xreg)
# fit regression model and get residuals
fit <- lm(x ~ 0 + xreg)
ehat <- residuals(fit)
# used with pvalue = "RS"
Nc <- n - ncol(xreg)
# test statistics
if (identical(sid, "all"))
{
if (type == "dummy")
{
stat <- matrix(nrow = S+1, ncol = 2)
id <- 0
for (i in seq_len(S))
{
id <- id + 1
stat[i,1] <- ch.test0(id)
stat[i,2] <- switch(pvalue,
#"raw" = 1 - .CH.cvals[[1]](stat[i,1]),
"raw" = uroot.raw.pvalue(stat[i,1], "CH", 1),
"RS" = ch.rs.pvalue(stat[i,1], "dummy", lag1, S, Nc, rs.nobsreg, 1))
}
stat[S+1,1] <- ch.test0(seq_len(S))
##NOTE to mention in documentation
#"RS" p-value is not available for the joint test with dummies
stat[S+1,2] <- uroot.raw.pvalue(stat[S+1,1], "CH", S)
colnames(stat) <- c("statistic", "p-value")
rownames(stat) <- c(switch(as.character(S),
"4" = paste0("Quarter", seq_len(S)), "12" = month.abb,
paste0("Season", seq_len(S))), "joint")
} else { #type == "trigonometric"
Shp1 <- Sh + 1
stat <- matrix(nrow = Shp1, ncol = 2)
id <- c(-1, 0)
for (i in seq_len(Sh-isSeven))
{
id <- id + 2
stat[i,1] <- ch.test0(id)
stat[i,2] <- switch(pvalue,
"raw" = uroot.raw.pvalue(stat[i,1], "CH", 2),
"RS" = ch.rs.pvalue(stat[i,1], "trigonometric", lag1, S, Nc, rs.nobsreg, 2))
}
if (isSeven)
{
stat[Sh,1] <- ch.test0(S-1)
stat[Sh,2] <- switch(pvalue,
"raw" = uroot.raw.pvalue(stat[Sh,1], "CH", 1),
"RS" = ch.rs.pvalue(stat[Sh,1], "trigonometric", lag1, S, Nc, rs.nobsreg, 1))
}
stat[Shp1,1] <- ch.test0(seq_len(S-1))
stat[Shp1,2] <- switch(pvalue,
"raw" = uroot.raw.pvalue(stat[Shp1,1], "CH", S-1),
"RS" = ch.rs.pvalue(stat[Shp1,1], "trigonometric", lag1, S, Nc, rs.nobsreg, S-1))
colnames(stat) <- c("statistic", "p-value")
if (isSeven) {
rownames(stat) <- c(paste0("pi/", Sh),
if(Sh > 2) paste0(seq.int(2, Sh-1), "pi/", Sh), "pi", "joint")
} else
rownames(stat) <- c(paste0(seq.int(2, S, 2), "pi/", S), "joint")
}
} else # sid != "all"
if (identical(sid, "joint")) {
if (type == "dummy")
{
stat <- ch.test0(seq_len(S))
stat <- cbind("joint" = stat, "p-value" = uroot.raw.pvalue(stat, "CH", S))
} else { # type trigonometric
stat <- ch.test0(seq_len(S-1))
pval <- switch(pvalue,
"raw" = uroot.raw.pvalue(stat, "CH", S-1),
"RS" = ch.rs.pvalue(stat, type, lag1, S, Nc, rs.nobsreg, S-1))
stat <- cbind("joint" = stat, "p-value" = pval)
}
} else {
# "sid" is a numeric vector indicating the index of the
# seasonal dummy(s) or cycle(s) to be tested
if (pvalue == "RS")
{
#it could be checked if a case for which "RS" p-values are available
#is requested through "sid", but for that end, simply use default "sid" value
pvalue <- "raw"
warning("argument ", sQuote("pvalue"), " was changed to ", sQuote("raw"))
}
#if length(id) > 1, a joint test for those seasons or cycles is obtained
stat <- ch.test0(id)
pval <- uroot.raw.pvalue(stat, "CH", length(id))
stat <- rbind(c(stat, pval))
colnames(stat) <- c("statistic", "p-value")
if (type == "dummy")
{
rownames(stat) <- switch(as.character(S),
"4" = paste("Quarter(s)", paste0(id, collapse = ",")),
"12" = paste(month.abb[id], collapse = ","),
paste("Season(s)", paste0(id, collapse = ",")))
} else { # type trigonometric
##TODO S odd (see how this is arranged above)
}
}
# output
res <- list(statistics = stat[,1], pvalues = stat[,2],
method = "Canova and Hansen test for seasonal stability", data.name = data.name,
type = type, fitted.model = fit,
NW.order = NW.order, lag1 = lag1, isNullxreg = isNullxreg, type.pvalue = pvalue,
pvlabels = symnum(stat[,"p-value"], corr = FALSE, na = FALSE,
cutpoints = c(0, 0.001, 0.01, 0.05, 0.1, 1),
symbols = c("***","**","*","."," ")))
class(res) <- "CHtest"
res
}
|