1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952
|
#' Iterative robust model-based imputation (IRMI)
#'
#' In each step of the iteration, one variable is used as a response variable
#' and the remaining variables serve as the regressors.
#'
#' The method works sequentially and iterative. The method can deal with a
#' mixture of continuous, semi-continuous, ordinal and nominal variables
#' including outliers.
#'
#' A full description of the method can be found in the mentioned reference.
#'
#' @param x data.frame or matrix
#' @param eps threshold for convergency
#' @param maxit maximum number of iterations
#' @param mixed column index of the semi-continuous variables
#' @param mixed.constant vector with length equal to the number of
#' semi-continuous variables specifying the point of the semi-continuous
#' distribution with non-zero probability
#' @param count column index of count variables
#' @param step a stepwise model selection is applied when the parameter is set
#' to TRUE
#' @param robust if TRUE, robust regression methods will be applied
#' @param takeAll takes information of (initialised) missings in the response
#' as well for regression imputation.
#' @param noise irmi has the option to add a random error term to the imputed
#' values, this creates the possibility for multiple imputation. The error term
#' has mean 0 and variance corresponding to the variance of the regression
#' residuals.
#' @param noise.factor amount of noise.
#' @param force if TRUE, the algorithm tries to find a solution in any case,
#' possible by using different robust methods automatically.
#' @param robMethod regression method when the response is continuous.
#' @param force.mixed if TRUE, the algorithm tries to find a solution in any
#' case, possible by using different robust methods automatically.
#' @param addMixedFactors if TRUE add additional factor variable for each
#' mixed variable as X variable in the regression
#' @param modelFormulas a named list with the name of variables for the rhs
#' of the formulas, which must contain a rhs formula for each variable with
#' missing values, it should look like `list(y1=c("x1","x2"),y2=c("x1","x3"))``
#' if factor variables for the mixed variables should be created for the
#' regression models
#' @param mi number of multiple imputations.
#' @param trace Additional information about the iterations when trace equals
#' TRUE.
#' @param init.method Method for initialization of missing values (kNN or
#' median)
#' @param multinom.method Method for estimating the multinomial models
#' (current default and only available method is multinom)
#' @param imp_var TRUE/FALSE if a TRUE/FALSE variables for each imputed
#' variable should be created show the imputation status
#' @param imp_suffix suffix for the TRUE/FALSE variables showing the imputation
#' status
#' @return the imputed data set.
#' @author Matthias Templ, Alexander Kowarik
#' @seealso [mi::mi()]
#' @references M. Templ, A. Kowarik, P. Filzmoser (2011) Iterative stepwise
#' regression imputation using standard and robust methods. *Journal of
#' Computational Statistics and Data Analysis*, Vol. 55, pp. 2793-2806.
#' @references A. Kowarik, M. Templ (2016) Imputation with
#' R package VIM. *Journal of
#' Statistical Software*, 74(7), 1-16.
#' @keywords manip
#' @family imputation methods
#' @examples
#'
#' data(sleep)
#' irmi(sleep)
#'
#' data(testdata)
#' imp_testdata1 <- irmi(testdata$wna, mixed = testdata$mixed)
#'
#' # mixed.constant != 0 (-10)
#' testdata$wna$m1[testdata$wna$m1 == 0] <- -10
#' testdata$wna$m2 <- log(testdata$wna$m2 + 0.001)
#' imp_testdata2 <- irmi(
#' testdata$wna,
#' mixed = testdata$mixed,
#' mixed.constant = c(-10,log(0.001))
#' )
#' imp_testdata2$m2 <- exp(imp_testdata2$m2) - 0.001
#'
#' #example with fixed formulas for the variables with missing
#' form = list(
#' NonD = c("BodyWgt", "BrainWgt"),
#' Dream = c("BodyWgt", "BrainWgt"),
#' Sleep = c("BrainWgt" ),
#' Span = c("BodyWgt" ),
#' Gest = c("BodyWgt", "BrainWgt")
#' )
#' irmi(sleep, modelFormulas = form, trace = TRUE)
#'
#' # Example with ordered variable
#' td <- testdata$wna
#' td$c1 <- as.ordered(td$c1)
#' irmi(td)
#'
#' @export
irmi <- function(x, eps = 5, maxit = 100, mixed = NULL, mixed.constant = NULL,
count = NULL, step = FALSE, robust = FALSE, takeAll = TRUE, noise = TRUE,
noise.factor = 1, force = FALSE, robMethod = "MM", force.mixed = TRUE,
mi = 1, addMixedFactors = FALSE, trace = FALSE, init.method = "kNN",
modelFormulas = NULL, multinom.method = "multinom", imp_var = TRUE,
imp_suffix = "imp") {
#Authors: Alexander Kowarik and Matthias Templ, Statistics Austria, GPL 2 or
#newer, version: 15. Nov. 2012
#object mixed conversion into the right format (vector of variable names of
#type mixed)
#TODO: Data sets with variables "y" might fail
check_data(x)
if (trace) {
message("Method for multinomial models:", multinom.method, "\n")
}
if (!is.data.frame(x)) {
if (is.matrix(x))
x <- as.data.frame(x)
else
stop("data frame must be provided")
}
if (!is.null(mixed.constant) && !is.null(mixed)) {
if (length(mixed) != length(mixed.constant))
stop("The length of 'mixed' and 'mixed.constant' differ.")
}
if (!is.null(mixed)) {
if (!is.character(mixed)) {
if (is.logical(mixed)) {
if (length(mixed) != length(colnames(x)))
stop("the mixed parameter is not defined correct.")
mixed <- colnames(x)[mixed]
} else if (is.numeric(mixed)) {
if (max(mixed) > length(colnames(x)))
stop("the mixed parameter is not defined correct.")
mixed <- colnames(x)[mixed]
}
} else if (!all(mixed %in% colnames(x))) {
stop("Not all mixed variables are found in the colnames of the input dataset.")
}
}
if (!is.null(count)) {
if (!is.character(count)) {
if (is.logical(count)) {
if (length(count) != length(colnames(x)))
stop("the count parameter is not defined correct.")
count <- colnames(x)[count]
} else if (is.numeric(count)) {
if (max(count) > length(colnames(x)))
stop("the count parameter is not defined correct.")
count <- colnames(x)[count]
}
} else if (!all(count %in% colnames(x))) {
stop("Not all count variables are found in the colnames of the input dataset.")
}
}
class1 <- function(x) class(x)[1]
types <- lapply(x, class1)
# if(any(types=="ordered")){
# for(i in which(types=="ordered")){
# msg <- paste(names(x)[i]," is defined as ordered,but irmi cannot deal with ordered variables
# at the moment, therefore the ordered attribute is set to FALSE \n",sep="")
# cat(msg)
# x[,i] <- factor(x[,i],ordered=FALSE)
# types[i] <- "factor"
# }
# }
types[colnames(x) %in% mixed] <- "mixed"
types[colnames(x) %in% count] <- "count"
attributes(types)$names <- NULL
types <- unlist(types)
if (any(types == "character")) {
chr_ind <- which(types == "character")
warning("At least one character variable is converted into a factor")
for (ind in chr_ind) {
x[, ind] <- as.factor(x[, ind])
types[ind] <- "factor"
}
}
#determine factor type: dichotomous or polytomous
#detect problematic factors
ind_fac <- which(types == "factor")
for (ind in ind_fac) {
#get number of levels
fac_nlevels <- nlevels(x[[ind]])
if (fac_nlevels < 2)
stop(sprintf("factor with less than 2 levels detected! - `%s`", names(x)[ind]))
types[ind] = ifelse(fac_nlevels == 2, "binary", "nominal")
}
ind_ord <- which(types == "ordered")
for (ind in ind_ord) {
#get number of levels
fac_nlevels <- nlevels(x[[ind]])
if (fac_nlevels == 2)
types[ind] <- "binary"
}
missing_summary <- cbind(types, apply(x, 2, function(x) sum(is.na(x))))
colnames(missing_summary) <- c("type", "#missing")
if (imp_var) {
imp_vars <- paste(rownames(missing_summary), "_", imp_suffix, sep = "")
imp_vardf <- as.data.frame(apply(x, 2, function(x) is.na(x)))
colnames(imp_vardf) <- imp_vars
imp_vardf <- imp_vardf[, missing_summary[, 2] != "0", drop = FALSE]
}
# save(x, file="xtest.RData")
P <- dim(x)[2]
## error management:
if (dim(x)[2] < 2) stop("Less than 2 variables included in x.")
if (step && robust)
stop("robust stepwise is not yet implemented")
if (!any(is.na(x))) message("No missings in x. Nothing to impute")
if (any(apply(x, 1, function(x) all(is.na(x))))) stop("Unit non-responses included in x.")
## mixed into logical vector:
if (!is.logical(mixed) & !is.null(mixed)) {
ind <- rep(FALSE, P)
ind[mixed] <- TRUE
}
if (!is.character(mixed)) {
mixed <- colnames(x)[mixed]
}
if (!is.character(count)) {
count <- colnames(x)[count]
}
# if(!is.null(mixed) && length(mixed) != P) stop(paste("Length of mixed must either be NULL or", P))
## count into logical vector:
#if(!is.logical(count) & !is.null(count)){
# ind <- rep(FALSE, P)
# ind[which(colnames(x) == count)] <- TRUE
# countlog <- ind
#} else countlog <- count
# if(is.null(mixed)) mixed <- rep(FALSE, P)
# if(is.null(count)) count <- rep(FALSE, P)
# if(!is.null(count) && length(count) != P) stop(paste("Length of mixed must either be NULL or", P))
#if(any(countlog == mixedlog) && countlog == TRUE) stop(paste("you declined variable", which(countlog==mixedlog && countlog==TRUE), "to be both, count and mixed"))
if (length(Inter(list(count, mixed))) > 0)
stop(paste("you declined a variable to be both, count and mixed"))
#for(i in which(countlog)){
# class(x[,i]) <- c("count", "numeric")
# }
## check for factors in x
factors <- vector()
for (i in 1:ncol(x)) {
factors <- c(factors, is.factor(x[, i]))
}
## Recode the levels of a factor to 1:number of levels
if (any(factors)) {
factors <- colnames(x)[factors]
orig_levels <- list()
for (f in 1:length(factors)) {
orig_levels[[f]] <- levels(x[, factors[f]])
levels(x[, factors[f]]) <- 0:(length(orig_levels[[f]]) - 1)
}
} else factors <- character(0)
vars_with_na <- vector()
## index for missingness
w2 <- is.na(x)
## variables that include missings
for (i in seq(P)) {
if (anyNA(x[, i]))
vars_with_na <- c(vars_with_na, i)
}
## count runden, da MIttelwertimputation in initialise:
n_digits_count <- apply(
x[, types == "count", drop = FALSE], 2,
function(x){
x <- as.character(x)
max(unlist(lapply(
strsplit(x, "\\."),
function(x) ifelse(length(x) > 1, nchar(strsplit(x, "\\.")[2]), 0)
)))
})
## initialisiere
#for( j in 1:ncol(x) ) {
#print(paste("HIER:", j))
x <- initialise(x, mixed = mixed, method = init.method,
mixed.constant = mixed.constant)
#}
## round count variables:
j <- 0
for (i in which(types == "count")) {
j <- j + 1
x[, i] <- round(x[, i], n_digits_count[j])
}
if (trace) print(head(x))
mixed_tf <- FALSE
mixed_constant <- 0
### outer loop
d <- 99999
it <- 0
while (d > eps && it < maxit) {
it <- it + 1
if (trace)
message("Iteration", it, "\n")
x_save <- x
## inner loop
for (i in vars_with_na) {
if (trace) {
print(paste("inner loop:", i))
if (Sys.info()[1] == "Windows") flush.console()
}
y_part <- x[, i, drop = FALSE]
wy <- which(w2[, i])
x_part <- x[, -i, drop = FALSE]
## --- Start Additonal xvars for mixed vars
if (!is.null(mixed) && addMixedFactors) {
if (any(names(x_part) %in% mixed)) {
mixed_index <- which(names(x_part) %in% mixed)
for (ii in 1:length(mixed_index)) {
namenew <- paste(names(x_part)[mixed_index[ii]], "ADDMIXED", sep = "")
if (is.null(mixed.constant))
x_part[, namenew] <- as.numeric(x_part[, mixed_index[ii]] == 0)
else
x_part[, namenew] <- as.numeric(x_part[, mixed_index[ii]] == mixed.constant[ii])
}
}
} ## end additional xvars for mixed vars ---
if (!takeAll) {
data_for_reg <- data.frame(cbind(y_part[-wy, ], x_part[-wy, ])) ## part, wo in y keine missings
} else {
data_for_reg <- data.frame(cbind(y_part, x_part))
}
if (!is.null(mixed)) {
if (names(x)[i] %in% mixed) {
mixed_tf <- TRUE
if (is.null(mixed.constant)) {
mixed_constant <- 0
} else {
mixed_constant <- mixed.constant[which(mixed == names(x)[i])]
}
} else {
mixed_tf <- FALSE
}
}
colnames(data_for_reg)[1] <- "y"
new.dat <- data.frame(cbind(rep(1, length(wy)), x_part[wy,, drop = FALSE]))
#print(attributes(data_for_reg$y)$cn)
if (trace) {
print(types[[i]])
}
meth <- switch(
## todo: ausserhalb der Schleife!!
types[i],
integer = "numeric",
numeric = "numeric",
mixed = "numeric",
binary = "bin",
nominal = "factor",
count = "count",
ordered = "ordered",
logical = "bin",
stop("unsupported variable type for column ", i)
)
## replace initialised missings:
if (length(wy) > 0) {
#idata_for_reg <<- data_for_reg
#indata <<- new.dat[,-1,drop=FALSE]
#imeth <<- meth
#ii <<- i
#iindex <<- wy
#imixed_tf<<- mixed_tf
#ifactors <<- factors
#istep <<- step
#irobust <<- robust
#inoise <<- FALSE
#itypes <<- types
#debug(getM)
if (trace)
print(meth)
#print(lapply(data_for_reg, class))
#if(i==10) stop("ZUR KONTROLLE i=10")
if (!is.null(modelFormulas)) {
TFform <- names(modelFormulas) == colnames(x)[i]
if (any(TFform))
active_formula <- modelFormulas[[which(TFform)]]
else
active_formula <- names(data_for_reg)[names(data_for_reg) != "y"]
} else
active_formula <- names(data_for_reg)[names(data_for_reg) != "y"]
if (trace) {
print(paste("formula used:", paste(colnames(x)[i], "~",
paste(active_formula, collapse = "+"))))
if (Sys.info()[1] == "Windows") flush.console()
}
x[wy, i] <- getM(
x_reg = data_for_reg, ndata = new.dat[, -1, drop = FALSE], type = meth,
index = wy, mixed_tf = mixed_tf, mixed_constant = mixed_constant,
factors = factors, step = step, robust = robust, noise = FALSE,
force = force, robMethod, form = active_formula,
multinom.method = multinom.method)
#if(!testdigits(x$x5)) stop()
}
} ## end inner loop
d <- 0
if (any(types %in% c("numeric", "mixed")))
d <- sum( (x_save[, types %in% c("numeric", "mixed")] -
x[, types %in% c("numeric", "mixed")]) ^ 2,
na.rm = TRUE) #todo: Faktoren anders behandeln.
if (any(!types %in% c("numeric", "mixed")))
d <- d + sum(x_save[, !types %in% c("numeric", "mixed")] != x[, !types %in% c("numeric", "mixed")])
flush.console()
if (trace) {
print(paste("it =", it, ", Wert =", d))
print(paste("eps", eps))
print(paste("test:", d > eps))
}
} ## end outer loop
if (it > 1) {
d <- 0
if (any(types %in% c("numeric", "mixed")))
d <- sum( (x_save[, types %in% c("numeric", "mixed")] -
x[, types %in% c("numeric", "mixed")]) ^ 2, na.rm = TRUE)
#todo: Faktoren anders behandeln.
if (any(!types %in% c("numeric", "mixed")))
d <- d + sum(x_save[, !types %in% c("numeric", "mixed")] != x[, !types %in% c("numeric", "mixed")])
if (trace) {
if (it < maxit) {
print(paste(d, "<", eps, "= eps"))
print(paste(" --> finished after", it, "iterations"))
} else if (it == maxit) {
print("not converged...")
print(paste(d, "<", eps, "= eps"))
}
}
}
### Add NOISE:
### A last run with building the model and adding noise...
if (noise && mi == 1) {
for (i in seq(P)) {
flush.console()
y_part <- x[, i, drop = FALSE]
wy <- which(w2[, i])
x_part <- x[, -i, drop = FALSE]
if (!takeAll) {
data_for_reg <- data.frame(cbind(y_part[-wy, ], x_part[-wy, ])) ## part, wo in y keine missings
} else {
data_for_reg <- data.frame(cbind(y_part, x_part))
}
if (!is.null(mixed)) {
if (names(x)[i] %in% mixed) {
mixed_tf <- TRUE
if (is.null(mixed.constant)) {
mixed_constant <- 0
} else {
mixed_constant <- mixed.constant[which(mixed == names(x)[i])]
}
} else {
mixed_tf <- FALSE
}
}
colnames(data_for_reg)[1] <- "y"
new.dat <- data.frame(cbind(rep(1, length(wy)), x_part[wy,, drop = FALSE]))
meth <- switch(
## todo: ausserhalb der Schleife!!
types[i],
integer = "numeric",
numeric = "numeric",
mixed = "numeric",
binary = "bin",
nominal = "factor",
count = "count",
ordered = "ordered",
logical = "bin",
stop("unsupported variable type for column ", i)
)
if (!is.null(modelFormulas)) {
TFform <- names(modelFormulas) == colnames(x)[i]
if (any(TFform))
active_formula <- modelFormulas[[which(TFform)]]
else
active_formula <- names(data_for_reg)[names(data_for_reg) != "y"]
} else
active_formula <- names(data_for_reg)[names(data_for_reg) != "y"]
if (length(wy) > 0) x[wy, i] <- getM(
x_reg = data_for_reg, ndata = new.dat[, -1, drop = FALSE], type = meth,
index = wy, mixed_tf = mixed_tf, mixed_constant = mixed_constant,
factors = factors, step = step, robust = robust, noise = TRUE,
noise.factor = noise.factor, force = force, robMethod,
form = active_formula, multinom.method = multinom.method)
}
}
## End NOISE
#if(!testdigits(x$x5)) stop("s121212121212asasa\n")
## Begin multiple imputation
if (mi > 1 && !noise) {
message("Noise option is set automatically to TRUE")
noise <- TRUE
}
if (mi > 1) {
mimp <- list()
x_save1 <- x
for (m in 1:mi) {
for (i in seq(P)) {
flush.console()
y_part <- x[, i, drop = FALSE]
wy <- which(w2[, i])
x_part <- x[, -i, drop = FALSE]
if (!takeAll) {
data_for_reg <- data.frame(cbind(y_part[-wy, ], x_part[-wy, ])) ## part, wo in y keine missings
} else {
data_for_reg <- data.frame(cbind(y_part, x_part))
}
if (!is.null(mixed)) {
if (names(x)[i] %in% mixed) {
mixed_tf <- TRUE
if (is.null(mixed.constant))
mixed_constant <- 0
else
mixed_constant <- mixed.constant[which(mixed == names(x)[i])]
} else {
mixed_tf <- FALSE
}
}
colnames(data_for_reg)[1] <- "y"
new.dat <- data.frame(cbind(rep(1, length(wy)), x_part[wy,, drop = FALSE]))
if (class(data_for_reg$y) == "numeric")
meth <- "numeric"
else if (class(data_for_reg$y) == "factor" & length(levels(data_for_reg$y)) == 2)
meth <- "bin"
else
meth <- "factor"
## replace initialised missings:
if (!is.null(modelFormulas)) {
TFform <- names(modelFormulas) == colnames(x)[i]
if (any(TFform))
active_formula <- modelFormulas[[which(TFform)]]
else
active_formula <- names(data_for_reg)[names(data_for_reg) != "y"]
} else
active_formula <- names(data_for_reg)[names(data_for_reg) != "y"]
if (length(wy) > 0) x[wy, i] <- getM(
x_reg = data_for_reg, ndata = new.dat[, -1, drop = FALSE], type = meth,
index = wy, mixed_tf = mixed_tf, mixed_constant = mixed_constant,
factors = factors, step = step, robust = robust, noise = TRUE,
noise.factor = noise.factor, force = force, robMethod,
form = active_formula, multinom.method = multinom.method)
}
mimp[[m]] <- x
x <- x_save1
}
x <- mimp
}
## End Multiple Imputation
## Recode factors to their original coding
if (length(factors) > 0) {
for (f in 1:length(factors)) {
# cat("vorher\n")
# print(str(x))
# print(orig_levels[[f]])
if (mi > 1) {
for (mii in 1:mi)
levels(x[[mii]][, factors[f]]) <- orig_levels[[f]]
} else {
levels(x[, factors[f]]) <- orig_levels[[f]]
}
# cat("nachher\n")
}
}
if (trace) {
message("Imputation performed on the following data set:\n")
print(missing_summary)
}
if (imp_var) {
if (trace) {
message(paste("The variables", paste(colnames(imp_vardf), collapse = ","),
"are added to the data set."))
}
x <- cbind(x, imp_vardf)
}
invisible(x)
}
### utility functions
anyNA <- function(X) any(is.na(X))
Unit <- function(A) UseMethod("Unit")
Unit.list <- function(A) {
# Units a list of vectors into one vector
a <- vector()
for (i in 1:length(A)) {
a <- c(a, A[[i]])
}
levels(as.factor(a))
}
Inter <- function(A) UseMethod("Inter")
Inter.list <- function(A) {
# common entries from a list of vectors
a <- Unit(A)
TF <- rep(TRUE, length(a))
for (i in 1:length(a)) {
for (j in 1:length(A)) {
TF[i] <- TF[i] && a[i] %in% A[[j]]
}
}
levels(as.factor(a[TF]))
}
#' Initialization of missing values
#'
#' Rough estimation of missing values in a vector according to its type.
#'
#' Missing values are imputed with the mean for vectors of class
#' `"numeric"`, with the median for vectors of class `"integer"`, and
#' with the mode for vectors of class `"factor"`. Hence, `x` should
#' be prepared in the following way: assign class `"numeric"` to numeric
#' vectors, assign class `"integer"` to ordinal vectors, and assign class
#' `"factor"` to nominal or binary vectors.
#'
#' @param x a vector.
#' @param mixed a character vector containing the names of variables of type
#' mixed (semi-continous).
#' @param method Method used for Initialization (median or kNN)
#' @param mixed.constant vector with length equal to the number of
#' semi-continuous variables specifying the point of the semi-continuous
#' distribution with non-zero probability
#' @return the initialized vector.
#' @note The function is used internally by some imputation algorithms.
#' @author Matthias Templ, modifications by Andreas Alfons
#' @keywords manip
#' @export initialise
initialise <- function(x, mixed, method = "kNN", mixed.constant = NULL) {
if (method == "median") {
for (j in 1:ncol(x)) {
xx <- x[, j]
if (is.numeric(xx)) {
xx <- as.vector(impute(as.matrix(xx), "median"))
}
if (is.factor(xx) || is.character(xx)) {
xx <- as.character(xx)
#if(class(x)[2] == "count") {x <-as.vector(impute(as.matrix(x), "mean"))} ### hier Fehler #TODO: verbessern
xx[which(is.na(xx))] <- names(which.max(table(xx)))
xx <- as.factor(xx)
}
x[, j] <- xx
}
} else {
x <- invisible(kNN(x, imp_var = FALSE, mixed = mixed,
mixed.constant = mixed.constant))
}
return(x)
}
## switch function to automatically select methods
getM <- function(x_reg, ndata, type, index, mixed_tf, mixed_constant, factors,
step, robust, noise, noise.factor = 1, force = FALSE,
robMethod = "MM", form = NULL, multinom.method = "mnlogit") {
switch(
type,
numeric = useLM(x_reg, ndata, index, mixed_tf, mixed_constant, factors, step,
robust, noise, noise.factor, force, robMethod, form = form),
factor = useMN(x_reg, ndata, index, factors, step, robust, form = form,
multinom.method = multinom.method),
bin = useB(x_reg, ndata, index, factors, step, robust, form = form),
count = useGLMcount(x_reg, ndata, index, factors, step, robust,
form = form),
ordered = useOrd(x_reg, ndata, index, factors, step, robust, form = form),
)
}
### LM+GLM --- useLM start
useLM <- function(x_reg, ndata, wy, mixed_tf, mixed_constant, factors, step,
robust, noise, noise.factor, force, robMethod, form) {
n <- nrow(x_reg)
factors <- Inter(list(colnames(x_reg), factors))
## for semicontinuous variables
if (mixed_tf) {
del_factors <- vector()
if (length(factors) > 0){
for (f in 1:length(factors)) {
if (any(summary(x_reg[, factors[f]]) == 0)) {
x_reg <- x_reg[, -which(colnames(x_reg) == factors[f])]
ndata <- ndata[, -which(colnames(ndata) == factors[f])]
del_factors <- c(del_factors, factors[f])
}
}
}
x_reg1 <- x_reg
x_reg1$y[x_reg$y == mixed_constant] <- 0
x_reg1$y[x_reg$y != mixed_constant] <- 1
form <- form[form %in% names(x_reg1)]
if (class(form) != "formula")
form <- as.formula(paste("y ~", paste(form, collapse = "+")))
else
form <- y ~ .
if (!robust)
glm.bin <- glm(form, data = x_reg1, family = "binomial")
else {
glm.bin <- glm(form, data = x_reg1, family = "binomial")
}
# if VGAM will be chosen instead of multinom:
# op <- options() #Alles auskommentiert, weil VGAM draussen!
# options(show.error.messages=FALSE)
# try(detach(package:VGAM))
# options(op)
if (step)
glm.bin <- stepAIC(glm.bin, trace = -1)
## imputation
imp <- predict(glm.bin, newdata = ndata, type = "response")
imp[imp < 0.5] <- 0
imp[imp >= 0.5] <- 1
x_reg <- x_reg[x_reg$y != mixed_constant, ]
factors2 <- factors[!factors %in% del_factors]
if (length(factors2) > 0) {
for (f in 1:length(factors2)) {
if (any(summary(x_reg[, factors2[f]]) == 0)) {
x_reg <- x_reg[, -which(colnames(x_reg) == factors2[f])]
ndata <- ndata[, -which(colnames(ndata) == factors2[f])]
}
}
}
## for continuous variables:
} else {
if (length(factors) > 0) {
del_factors <- vector()
for (f in 1:length(factors)) {
if (any(summary(x_reg[, factors[f]]) == 0)) {
x_reg <- x_reg[, -which(colnames(x_reg) == factors[f])]
ndata <- ndata[, -which(colnames(ndata) == factors[f])]
del_factors <- c(del_factors, factors[f])
}
}
}
imp <- rep(1, nrow(ndata))
}
##Two-Step
if (class(form) != "formula") {
form <- form[form %in% names(x_reg)]
if (length(form) > 0)
form <- as.formula(paste("y ~", paste(form, collapse = "+")))
else
form <- y ~ .
} else {
form_vars <- all.vars(form)[-1]
if (any(!form_vars %in% colnames(x_reg))) {
form_vars <- form_vars[form_vars %in% colnames(x_reg)]
form <- as.formula(paste("y ~", paste(form_vars, collapse = "+")))
}
}
if (!robust) {
glm.num <- glm(form, data = x_reg, family = "gaussian")
#cat("not ROBUST!!!!!!!!\n")
} else {
if (exists("glm.num"))
rm(glm.num)
if (force) {
try(glm.num <- rlm(form, data = x_reg, method = "MM"), silent = TRUE)
if (!exists("glm.num")) {
try(glm.num <- lmrob(form, data = x_reg), silent = TRUE)
if (!exists("glm.num")) {
glm.num <- rlm(form, data = x_reg, method = "M")
if (!exists("glm.num")) {
glm.num <- glm(form, data = x_reg, family = "gaussian")
}
}
}
} else {
glm.num <- switch(
robMethod,
lmrob = lmrob(form, data = x_reg),
lqs = lqs(form, data = x_reg),
rlm(form, data = x_reg, method = robMethod)
)
}
}
# op <- options()#Alles auskommentiert, weil VGAM draussen
# options(show.error.messages=FALSE)
# try(detach(package:VGAM))
# options(op)
if (step) {
glm.num <- stepAIC(glm.num, trace = -1)
}
if (noise) {
if (!robust) {
consistency_factor <- sqrt( (nrow(ndata[imp == 1,, drop = FALSE]) / n + 1))#*n/(n+1)
p_glm_num <- predict(glm.num, newdata = ndata[imp == 1,, drop = FALSE], se.fit = TRUE)
if (is.nan(p_glm_num $ residual.scale)) {
warning("The residual scale could not be computed, probably due to a rank deficient model. It is set to 1\n")
p_glm_num$residual.scale <- 1
}
imp2 <- p_glm_num$fit + noise.factor * rnorm(length(p_glm_num$fit), 0, p_glm_num$residual.scale * consistency_factor)
} else {
nout <- nrow(ndata[imp == 1,, drop = FALSE])
consistency_factor <- sqrt( (nrow(ndata[imp == 1,, drop = FALSE]) / n + 1))#*(n)/(n+1))
p_glm_num <- predict(glm.num, newdata = ndata[imp == 1,, drop = FALSE])
if (is.nan(glm.num$s)) {
warning("The residual scale could not be computed, probably due to a rank deficient model. It is set to 1\n")
glm.num$s <- 1
}
imp2 <- p_glm_num + noise.factor * rnorm(length(p_glm_num), 0, glm.num$s * consistency_factor)
}
} else
imp2 <- predict(glm.num, newdata = ndata[imp == 1,, drop = FALSE])
imp3 <- imp
imp3[imp == 0] <- mixed_constant
imp3[imp == 1] <- imp2
return(imp3)
# library(VGAM, warn.conflicts = FALSE, verbose=FALSE)
# -end useLM-
}
## count data as response
useGLMcount <- function(x_reg, ndata, wy, factors, step, robust, form) {
factors <- Inter(list(colnames(x_reg), factors))
if (length(factors) > 0) {
for (f in 1:length(factors)) {
if (any(summary(x_reg[, factors[f]]) == 0)) {
x_reg <- x_reg[, -which(colnames(x_reg) == factors[f])]
ndata <- ndata[, -which(colnames(ndata) == factors[f])]
}
}
}
form <- form[form %in% names(x_reg)]
if (length(form) > 0)
form <- as.formula(paste("y ~", paste(form, collapse = "+")))
else
form <- y ~ .
if (robust) {
#glmc <- glm(y~ ., data=x_reg, family=poisson)
glmc <- glmrob(form, data = x_reg, family = poisson)
glmc$rank <- ncol(x_reg)
#glmc$coef <- glmcR$coef
} else {
glmc <- glm(form, data = x_reg, family = poisson)
}
if (step & robust) stop("both step and robust equals TRUE not provided")
if (step) {
glmc <- stepAIC(glmc, trace = -1)
}
imp2 <- round(predict(glmc, newdata = ndata, type = "response"))
#iin[[length(iin)+1]]<<-imp2
return(imp2)
}
# categorical response
useMN <- function(x_reg, ndata, wy, factors, step, robust, form, multinom.method){
factors <- Inter(list(colnames(x_reg), factors))
if (length(factors) > 0) {
for (f in 1:length(factors)) {
if (any(summary(x_reg[, factors[f]]) == 0)) {
x_reg <- x_reg[, -which(colnames(x_reg) == factors[f])]
ndata <- ndata[, -which(colnames(ndata) == factors[f])]
}
}
}
form <- form[form %in% names(x_reg)]
if (length(form) > 0)
form <- as.formula(paste("y ~", paste(form, collapse = "+")))
else
form <- y ~ .
if (multinom.method == "multinom") {
co <- capture.output(multimod <- multinom(
form, data = x_reg, summ = 2, maxit = 50, trace = FALSE, MaxNWts = 50000 ))
if (step) {
multimod <- stepAIC(multimod, x_reg)
}
imp <- predict(multimod, newdata = ndata)
} else {
stop("multinom is the only implemented method at the moment!\n")
}
return(imp)
}
# ordered response
useOrd <- function(x_reg, ndata, wy, factors, step, robust, form){
factors <- Inter(list(colnames(x_reg), factors))
if (length(factors) > 0) {
for (f in 1:length(factors)) {
if (any(summary(x_reg[, factors[f]]) == 0)) {
x_reg <- x_reg[, -which(colnames(x_reg) == factors[f])]
ndata <- ndata[, -which(colnames(ndata) == factors[f])]
}
}
}
form <- form[form %in% names(x_reg)]
if (length(form) > 0)
form <- as.formula(paste("y ~", paste(form, collapse = "+")))
else
form <- y ~ .
multimod <- polr(form, data = x_reg)
if (step) {
multimod <- stepAIC(multimod, x_reg)
}
imp <- predict(multimod, newdata = ndata)
return(imp)
}
# binary response
useB <- function(x_reg, ndata, wy, factors, step, robust, form) {
factors <- Inter(list(colnames(x_reg), factors))
#TODO: Faktoren mit 2 Levels und nicht Levels 0 1, funktionieren NICHT!!!!
if (length(factors) > 0){
for (f in 1:length(factors)) {
if (any(summary(x_reg[, factors[f]]) == 0)) {
x_reg <- x_reg[, -which(colnames(x_reg) == factors[f])]
ndata <- ndata[, -which(colnames(ndata) == factors[f])]
}
}
}
form <- form[form %in% names(x_reg)]
if (length(form) > 0)
form <- as.formula(paste("y ~", paste(form, collapse = "+")))
else
form <- y ~ .
if (!robust)
glm.bin <- glm(form, data = x_reg, family = "binomial")
else {
# glm.bin <- BYlogreg(x0=x_reg[,-1], x_reg[,1]) ## BYlogreg kann niemals funken
glm.bin <- glm(form, data = x_reg, family = "binomial")
# if(exists("glm.bin"))
# rm(glm.bin)
# try(glm.bin <- glmrob(y ~ . , data=x_reg, family="binomial"),silent=TRUE)
# if(exists("glm.bin"))
# glm.bin$rank <- ncol(x_reg)
# else
# glm.bin <- glm(y ~ . , data=x_reg, family="binomial")
}
# op <- options() # Alles auskommentiert, weil VGAM draussen
# options(show.error.messages=FALSE)
# try(detach(package:VGAM))
# options(op)
if (step)
glm.bin <- stepAIC(glm.bin, trace = -1)
imp <- predict(glm.bin, newdata = ndata, type = "response")
if (is.logical(x_reg$y))
return(imp >= 0.5)
imp[imp < 0.5] <- 0
imp[imp >= 0.5] <- 1
# library(VGAM, warn.conflicts = FALSE, verbose=FALSE)
return(imp)
}
|