1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76
|
## ---- include = FALSE---------------------------------------------------------
knitr::opts_chunk$set(
collapse = TRUE,
comment = "#>",
fig.width = 6,
fig.align = "center"
)
## ----setup, message=F---------------------------------------------------------
library(VIM)
library(magrittr)
dataset <- sleep[, c("Dream", "NonD", "BodyWgt", "Span")] # dataset with missings
dataset$BodyWgt <- log(dataset$BodyWgt)
dataset$Span <- log(dataset$Span)
imp_knn <- kNN(dataset) # dataset with imputed values
## -----------------------------------------------------------------------------
aggr(dataset)
aggr(imp_knn, delimiter = "_imp")
## -----------------------------------------------------------------------------
# for missing values
x <- sleep[, c("Exp", "NonD", "Sleep")]
barMiss(x, only.miss = FALSE)
# for imputed values
x_IMPUTED <- regressionImp(NonD ~ Sleep, data = x)
barMiss(x_IMPUTED, delimiter = "_imp", only.miss = FALSE)
## -----------------------------------------------------------------------------
dataset <- sleep[, c("Span", "NonD","Sleep")]
# for missing values
scattMiss(dataset[,-3])
# for imputed values
imp_regression <- regressionImp(NonD ~ Sleep, dataset)
scattMiss(imp_regression[,-3], delimiter = "_imp")
## -----------------------------------------------------------------------------
## for missing values
x <- sleep[, c("Span", "NonD","Sleep")]
histMiss(x, only.miss = FALSE)
# for imputed values
x_IMPUTED <- regressionImp(NonD ~ Sleep, data = x)
histMiss(x_IMPUTED, delimiter = "_imp", only.miss = FALSE)
## ----warning=FALSE------------------------------------------------------------
x <- sleep[, c("Dream", "NonD","Sleep", "BodyWgt")]
x$BodyWgt <- log(x$BodyWgt)
# for missing values
matrixplot(x, sortby="BodyWgt")
# for imputed values - multiple variable imputation with regrssionImp()
x_IMPUTED <- regressionImp(NonD + Dream ~ Sleep, data = x)
matrixplot(x_IMPUTED, delimiter = "_imp", sortby = "BodyWgt")
## -----------------------------------------------------------------------------
dataset <- sleep[, c("Dream", "NonD", "BodyWgt", "Span")]
dataset$BodyWgt <- log(dataset$BodyWgt)
dataset$Span <- log(dataset$Span)
imp_knn <- kNN(dataset, variable = "NonD")
dataset[, c("NonD", "Span")] %>%
marginplot()
imp_knn[, c("NonD", "Span", "NonD_imp")] %>%
marginplot(delimiter = "_imp")
## ----warning=FALSE------------------------------------------------------------
## for missing values
x <- sleep[, 2:4]
x[, 1] <- log10(x[, 1])
marginmatrix(x)
## for imputed values
x_imp <- irmi(sleep[, 2:4])
x_imp[,1] <- log10(x_imp[, 1])
marginmatrix(x_imp, delimiter = "_imp")
|